

Lecture Notes in Computer Science 3437
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Thomas Gschwind Cecilia Mascolo (Eds.)

Software Engineering
and Middleware

4th International Workshop, SEM 2004
Linz, Austria, September 20-21, 2004
Revised Selected Papers

13

Volume Editors

Thomas Gschwind
IBM Research, Zurich Research Laboratory
Säumerstrasse 4, 8803 Rüschlikon, Switzerland
E-mail: thomasg at ieee.org

Cecilia Mascolo
University College of London, Department of Computer Science
Gower Street, London WC1E 6BT, UK
E-mail: c.mascolo at cs.ucl.ac.uk

Library of Congress Control Number: 2005923878

CR Subject Classification (1998): D.2, C.2.4, D.3.4

ISSN 0302-9743
ISBN-10 3-540-25328-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25328-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11407386 06/3142 5 4 3 2 1 0

Preface

Middleware provides an integration framework for multiple and potentially di-
verse computing platforms. It allows developers to engineer distributed applica-
tions more easily, providing abstractions and primitives to handle distribution
and coordination.

Middleware is constantly facing new challenges. Today’s advances in comput-
ing, including development of pervasive applications, exacerbates the diversity
problem, introducing variations not only in terms of performance, but also in
terms of environments and device characteristics. Software engineers are there-
fore challenged both in the area of the development of new and scalable mid-
dleware systems, where open, heterogeneous, component-based platforms should
provide richer functionality and services, and in the area of application develop-
ment, where tools to simplify the use of middleware solutions are necessary.

Software Engineering and Middleware is the premier workshop for the re-
search and practice community of software engineering working in both areas to
present and discuss new ideas in this field. SEM 2004 was the fourth international
workshop on software engineering and middleware of the EDO/SEM workshop
series. Previous workshops of this series were successfully held in 2002, 2000 and
1999. Most of the proceedings have been published by Springer in the Lecture
Notes in Computer Science series.

The program consisted of a keynote given by Prof. Gustavo Alonso and 16
technical paper presentations. The technical papers were carefully selected from
a total of 44 submitted papers. Each paper was thoroughly peer reviewed by at
least three members of the Program Committee and consensus on acceptance
was achieved by means of an electronic PC discussion. Among the accepted pa-
pers, the Program Committee selected the paper “Formally Designing an Event-
Based Application for Mobile Collaboration: A Case Study,” by Pascal Fenkam
and Mehdi Jazayeri, for the Best Paper Award, and the paper “Towards the De-
velopment of Ubiquitous Middleware Product Lines,” by Sven Apel and Klemens
Böhm, for the Best Student Paper Award.

The organizers would like to express their appreciation to a large number of
people without whom this event would not have been possible: the authors of
submitted papers; the Steering Committee the Program Committee, and the
external referees for their careful reviews and active participation in the paper
selection process; and Michael Fischer who managed the electronic submission
and reviewing service. We would also like to thank Paul Gruenbacher, in his role
as General Chair of ASE, and Stefan Tai and George Spanoudakis, in their roles
as ASE Workshops Chairs; they simplified our task considerably by scheduling
our work and providing us with templates and instructions. Especially, we would
like to thank the Steering Committee for giving us the opportunity to lead this
instance of the SEM workshop, and for their invaluable advice.

,

VI Preface

Finally, we are extremely grateful to IBM for the continuous support given
to the workshop: this has allowed us to offer prizes and to sponsor students’
participation.

November 2004 Thomas Gschwind and Cecilia Mascolo
Program Co-chairs

SEM 2004

Organization

This year’s Software Engineering and Middleware Workshop (SEM 2004) was
held on September 20-21, 2004, in Linz, Austria, as a co-located event of the
International Conference on Automated Software Engineering 2004. SEM 2004
was the fourth international workshop on software engineering and middleware
of the EDO/SEM workshop series.

Executive Committee

General Chair Gerti Kappel (Technische Universität Wien, Austria)
Program Co-chairs Thomas Gschwind (IBM Research, Switzerland)

Cecilia Mascolo (University College London, UK)
Web Chair Michael Fischer (Technische Universität Wien, Austria)
Steering Committee Alberto Coen-Porisini (Università dell’Insubria, Italy)

Premkumar Devanbu (University of California, Davis,
USA)

Wolfgang Emmerich (University College London, UK)
Volker Gruhn (Universität Leipzig, Germany)
Stefan Tai (IBM Research, USA)
André van der Hoek (University of California, Irvine,
USA)

Program Committee

Judith Bishop (University of Pretoria, South Africa)
Gordon Blair (Lancaster University, UK)
Licia Capra (University College London, UK)
Antonio Carzaniga (University of Colorado at Boulder, USA)
Jun Han (Swinburne University of Technology, Australia)
Katsuro Inoue (Osaka University, Japan)
Paola Inverardi (Università dell’Aquila, Italy)
Valerie Issarny (INRIA, France)
Arno Jacobson (University of Toronto, Canada)
Mehdi Jazayeri (Technische Universität Wien, Austria)
Doug Lea (State University of New York at Oswego, USA)
Amy Murphy (University of Rochester, USA)
Koichiro Ochimizu (Japan Institute of Technology, Japan)
Gian Pietro Picco (Politecnico di Milano, Italy)

VIII Organization

Isabelle Rouvellou (IBM Watson Research, USA)
Steve Vinoski (IONA, USA)
Eric Wohlstadter (University of British Columbia, Canada)

External Referees

Celeste Campo
Mauro Caporuscio
Alan Colman
Yan Jin
Heiko Ludwig
Johann Oberleitner
Patrizio Pelliccione

Francoise Sailhan
Masato Suzuki
Massimo Tivoli
Jian Yin
Stefanos Zachariadis

Sponsoring Institutions

International Business Machines (IBM), Armonk, NY, USA

Table of Contents

Keynote

Dynamic Software Adaptation: Middleware for Pervasive Computing
Gustavo Alonso . 1

Middleware Services

Here’s Your LegoTM Security Kit: How to Give Developers All
Protection Mechanisms They Will Ever Need

Konstantin Beznosov .

Integration of a Text Search Engine with a Java Messaging Service
Justin Almquist, Ian Gorton, Jereme Haack . 19

A Common Conceptual Basis for Analyzing Transaction Service
Configurations

Sten Loecher . 31

Alice: Modularization of Middleware Using Aspect-Oriented
Programming

Michael Eichberg, Mira Mezini . 47

Ubiquitous Computing

Service Discovery Protocol Interoperability in the Mobile Environment
Yérom-David Bromberg, Valérie Issarny . 64

Formally Designing an Event-Based Application for Mobile
Collaboration: A Case Study

Pascal Fenkam, Mehdi Jazayeri . 78

Supporting Generalized Context Interactions
Gregory Hackmann, Christine Julien, Jamie Payton,
Gruia-Catalin Roman . 91

A Middleware Centric Approach to Building Self- dapting Systems
Svein Hallsteinsen, Jacqueline Floch, Erlend Stav 107

3

a

X Table of Contents

PlanetSim: A New Overlay Network Simulation Framework
Pedro Garćıa, Carles Pairot, Rubén Mondéjar, Jordi Pujol,
Helio Tejedor, Robert Rallo . 123

Towards the Development of Ubiquitous Middleware Product Lines
Sven Apel, Klemens Böhm . 137

Performance and QOS

Extending Standard Java Runtime Systems for Resource Management
Walter Binder, Jarle Hulaas . 154

Modeling Distributed Applications for QoS Management
Patrice Vienne, Jean-Louis Sourrouille, Mathieu Maranzana 170

Accuracy of Performance Prediction for EJB Applications: A Statistical
Analysis

Yan Liu, Ian Gorton . 185

Building Distributed Applications

A Proposal for Evolution Driven Middleware Architecture for eBusiness
Process Execution

Yuji Sakata, Shigeyuki Matsuda . 199

Experience with Lightweight Distributed Component Technologies in
Business Intelligence Systems

Leticia Duboc, Tony Wicks, Wolfgang Emmerich 214

Integration of Component-Based Development-Deployment Support for
J2EE Middleware

Adirake Pimruang, Kazuhiro Fujieda, Koichiro Ochimizu 230

Author Index . 245

Dynamic Software Adaptation: Middleware for
Pervasive Computing

Gustavo Alonso

Information and Communication Systems Group,
Institute for Pervasive Computing,
Department of Computer Science

ETH Zürich

Abstract. The many different application scenarios found in pervasive
and ubiquitous computing have one aspect in common: software will be
confronted with continuously changing execution environments. To guar-
antee seamless service, protocols, infrastructure, and applications will
have to be able to adapt to changes in, e.g., networks, system configura-
tion, available resources, varying policies, etc. In other words, adaptation
will have to be a key feature of any mobile software system. In this talk
I will discuss the problems encountered when designing middleware for
pervasive computing and the role that software engineering could play in
solving those problems. I will mostly focus on dynamic software adapta-
tion and how it can be used to great effect to provide much more flexible
software platforms. The talk will revolve around the work done on the
PROSE system, a modified Java Virtual Machine that uses dynamic As-
pect Oriented Programming to extend a running application with new
functionality as dictated by the context where such an application runs.
The extensions are code fragments that transparently adapt the under-
lying application. The extensions can be used to modified every aspect
of the software hierarchy, e.g., they can be use both to replace a rout-
ing protocol as well as to change an application’s behavior. In the talk,
I will discuss the advantage of such an approach as well as the many
challenges it poses in terms of software development and maintenance,
security, software modularity, and even the accepted perception of what
constitutes a software application.

Biography

Gustavo Alonso is professor in the Department of Computer Science at the
Swiss Federal Institute of Technology in Zurich (ETHZ). Gustavo Alonso is
from Madrid, Spain, where he completed in 1989 his undergraduate studies
in Telecommunications Engineering at the Madrid Technical University (UPM-
ETSIT). As a Fulbright student, he did his graduate studies in computer science
(M.S. 1992, Ph.D. 1994) in the University of California at Santa Barbara. After
graduating, he was a visiting scientist in the IBM Almaden Research Labora-
tory in San Jose, California, where he worked within the Exotica project in areas

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1– 2,

,

2 G Alonso

such as workflow management and transaction processing. In September 1995
he joined ETH where he has since then lead several projects in databases, work-
flow management, replication, and advanced applications. Currently, Gustavo
Alonso leads the Information and Communication Systems Research Group.
The research interests of the group include Web Services, grid and cluster com-
puting, databases, workflow management, scientific applications of database and
workflow technology (for geographic, astronomical, and biochemical data), per-
vasive computing and dynamic aspect oriented programming. Gustavo Alonso
is co-author of a recently published book on Web Services (Springer Verlag,
Berlin 2004, ISBN 3-540-44008-9) and has participated in numerous conferences,
panels and projects related to the topic. He also regularly works as an indepen-
dent consultant in areas like enterprise application integration, Web Services,
and middleware.

.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 3 – 18, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Here’s Your LegoTM Security Kit: How to Give
Developers All Protection Mechanisms

They Will Ever Need

Konstantin Beznosov

Department of Electrical and Computer Engineering, University of British Columbia
beznosov@ece.ubc.ca

1 Introduction

The main premise of this paper is that the developers and owners of distributed
applications need and can be provided with three things: 1) Lego -like reusable and
versatile building blocks, 2) middleware architectures and tools for composing
useful customized solutions out of such blocks, and 3) the means of creating their
own inexpensive and error-proof building blocks. They could then create custom
distributed applications suitable to their needs and environments, while avoiding
costly reinvention and reconstruction of generic and, more often than not, quite
complex functionality common across applications. And we are not referring to the
business logic, which could arguably be included in the list. The focus is on the
nonfunctional properties and services (fault tolerance, performance, security, etc.)
of distributed applications.

The above needs have been determined from the author’s experience of working
for end-user, consulting, and vendor organizations. Working on the end-user side
showed that no vendor could ever satisfy all requirements for customizing their solu-
tions to our needs and constraints. Vendors’ customization mechanisms required too
much effort and expertise from in-house developers. Experience as a consultant, prod-
uct developer and architect gave convincing evidence that this problem was common
to many end-user organizations.

To demonstrate that useful building blocks, architectures, and extension means can
indeed be provided for customizing nonfunctional properties of distributed applica-
tions without demanding seasoned expertise in the subject matter from application
developers, we present an authentication and authorization (A &A) architecture for
ASP.NET Web services. This architecture, we believe, features all three desired char-
acteristics. It builds on the results of several years of applied research and practical

Abstract. By presenting a protection architecture for ASP.NET Web services,
this paper demonstrates the feasibility of creating middleware mechanisms in
the form of composable, flexible, and extensible building blocks. Like LegoTM
constructor parts, such blocks enable the reduction of the effort of constructing,
extending, and adjusting the application properties and middleware services in
response to requirements or environment changes.

TM

4 K. Beznosov

experience, giving the hope that similar architectures can be developed for easy cus-
tomization of other properties and services for distributed applications.

The paper is organized as follows: section 2 provides background and discusses re-
lated work; Section 3 explains technical motivations for the architecture and gives its
overview; Section 4 highlights those design decisions that made the architecture easy
to customize; discussion is in Section 5; and we conclude with Section 6.

2 Background and Related Work

Research on composition and customization for middleware has been largely focused
on three areas: core functionality; domain-specific properties and characteristics; and
middleware services. Research in core functionality concentrates on data
(un)marshaling, invocation dispatching, object life-cycle, data transport, etc. (TAO [1],
Quarterware [2], COMERA [3], Spring [4]). Examples from the work in domain-
specific properties and characteristics are real-time [5], load-balancing [6], QoS [7, 8],
performance and consistency [9]. Our work is on composable and customizable A&A
mechanisms and belongs to middleware services research, which concentrates on such
services as event notification [10], transactions and concurrency [11, 12], and security.

Work on customizable security mechanisms in middleware has been conducted at
least since DCE [13]. A wider known example is CORBA, which has a Security Ser-
vice [14] architecture that enables customization by supporting interceptors as well as
making authorization and audit decision objects, security context and some other
elements replaceable. However, because the granularity of CORBA Security replace-
able parts is too coarse it takes too much effort to customize the service. This draw-
back can also be viewed as low degree of composability. Besides DCE and CORBA,
other examples of architectures with replaceable security logic but low degree of
composability are more modern JAAS [15], Java Authorization Contract for Contain-
ers architecture [16], and Legion [17]. Our approach achieves fine granularity of the
replaceable parts and therefore a higher degree of composability.

What our approach (intentionally) leaves unanswered is how to express A&A poli-
cies and map them into a composition of A&A building blocks. Andersen et al. [18]
approach the problem from the other end and propose “programmable security” ap-
proach that uses Obol language to “program” middleware security protocols without
addressing the issue of translating such programs into compositions of specific ele-
ments of the middleware security architecture.

Design of the authorization mechanism described in this paper is largely based on
the Resource Access Decision (RAD) architecture [19, 20], which we follow more in
the spirit than in detail—rather as an architectural style. Briefly reviewed in Appendix
A, RAD is one of the first attempts to compose and customize authorization logic out
of simpler parts.

Although, neither RAD nor this work address the issue of conflicts that could arise
as a result of authorization logic composition, several solutions have been proposed
elsewhere. Jajodia et al. [21] have proposed an access control model in which incon-
sistencies among authorizations can be resolved using rules. The framework for ac-
cess control policy enforcement developed by Siewe et al. [22] allows multiple poli-

 Here’s Your LegoTM Security Kit 5

cies to be enforced through policies composition. It provides a way to specify com-
plex policies and to reason about their properties.

3 Architecture Motivation and Overview

The ASP.NET container is a popular hosting environment for Web services built and
run on Microsoft Windows and .NET platforms. However, the ASP.NET security
architecture [23], as provided out-of-the-box is not sufficiently flexible and extensible
to be adequate for enterprise applications. As we describe in [24], ASP.NET supports
limited authentication and group/user-based authorization, both bound to Microsoft
proprietary technologies. If an application needs to be protected with enterprise A&A
services, the developers have two options: The first, is to develop home-grown con-
tainer security extensions, which are hard for average application developers to get
right. The second option is to program the security logic into the Web service busi-
ness logic, but the resulting application is costly to evolve and support. In both cases,
the development of security-specific parts by average application developers is com-
monly believed to result in high vulnerability rates due to security-related bugs that
are hard to avoid and catch.

Due to its flexibility and extensibility, the protection architecture described in this
paper makes ASP.NET easier to integrate with organizational security infrastructure
with a reduced effort on the side of Web service developers. The architecture is flexi-
ble because it allows configuring of machine-wide authentication and authorization
functions, and overriding them for a subtree of the Web services (up to an individual
Web service application) in the directory-based ASP.NET hierarchy. Its extensibility is
revealed through the support of wide variety of A&A logic, as long as the logic can be
programmed as a .NET class and/or accessed (possibly via a proxy) through a prede-
fined .NET API. Furthermore, one can reuse other instances of such logic by combin-
ing authorization decisions from them according to predefined or custom rules.

4 The Architecture

The architecture details are described elsewhere [25]. This section focuses mainly on
those features of the architecture that enable the composition of more complex A&A
functionality from basic, reusable, building blocks. There are five features:

1. the separation of A&A enforcement logic from the decision logic,
2. the employment of the RAD architecture style, which makes creation of custom

authorization decision logic easier and avoids the need for a general-purpose pol-
icy evaluation engine,

3. flexible configuration-driven construction of the authorization decision informa-
tion,

4. fine-grained replaceable modules that enable support for a wide range of A&A
functionalities, and

5. the support for the scalability, extensibility, and reusability in the configuration
part of the architecture.

6 K. Beznosov

While most of these features have been already reported individually in the literature,
the novelty of our approach is in achieving new characteristics of middleware protec-
tion mechanisms by exploiting and combining these features.

4.1 Separation of Enforcement and Decision Logic

To integrate with ASP.NET run-time, the architecture takes advantage of the
ASP.NET interception mechanism, SOAP Extension [26], intended for additional
processing of SOAP messages. Although this mechanism is specific to ASP.NET,
other modern middleware technologies (e.g., CORBA, EJB, RMI) can intercept re-
quests or even individual messages [27-30]. Hence, the reliance on the existence of an
interception point in the request invocation chain does not limit our approach or
makes it specific to ASP.NET.

Fig. 1. General organization of the architecture into an interceptor

As shown in Figure 1, our custom version of SOAP Extension module (labeled “in-
terceptor”) performs initial extraction, formatting, and other preparation of HTTP re-
quests and contained in them SOAP messages, passing the data to the decision A&A
logic, and enforcing authorization decisions. Through the separation of the enforce-
ment and decision functions, we were able to make the enforcement policy neutral and
common to all Web services, while allowing the latter to be customizable to each ap-
plication. The customizable functionalities are authentication and authorization.

Authentication is commonly divided into two phases: retrieving authentication data
and validating it. CredentialsRetriever objects specialize in retrieving authentication
data, whereas validation follows lazy strategy and is left to the authorization phase.
Each retriever implementation is responsible for extracting particular data types from
appropriate locations. Authentication data and retrievers are represented in a uniform
fashion as implementations of Credential and CredentialsRetreiver interfaces accord-
ingly. This extensibility enables support for diverse authentication policies. For in-
stance, in the same ASP.NET container, one application might use only HTTP basic

 Here’s Your LegoTM Security Kit 7

authentication with username and password (HTTP-BA) over SSL, whereas another
could require client SSL certificate and a security token in the SOAP message header
to be present for successful authentication.

4.2 Employment of the RAD Architectural Style

The structure of the authorization-related elements of the architecture follows RAD
style, which enables the composition of more complex authorization policies out of
simpler ones. A brief overview of RAD is provided in Appendix A.

An authorization decision is reached in a three-step process made by evaluators,
combinator, and interceptor. Initial decisions are made by zero or more predefined or
custom authorization modules referred as Policy Evaluators (PEs). The strength of
RAD architectural style is in the support of fairly sophisticated authorization policies
(see [31] for an example) without the need for complex authorization engines. The
support is achieved by combining run-time decisions from several simple PEs into
one at the second step, performed by a Decision Combinator (DC).

Similarly to PEs, common variations of combination logic are provided in pre-built
DCs with the ability for developers to “plug in” custom implementations. To appreci-
ate the power of DC&PEs approach, consider a composition of “All Permits Re-
quired” DC with a role-based access control (RBAC) [32] PE. If an application owner
decides to further restrict access to a particular range of IP addresses, he or she can do
so by adding a PE that authorizes IP addresses, instead of modifying fairly complex
logic of the RBAC PE. The result is shown in Figure 2. Support for policies in which
PEs might have different priorities, is enabled through the use of PE names so that a
DC can discriminate between them.

Fig. 2. Resulted configuration after adding the PE, which restricts access based on the sender’s
IP address

The authorization process continues to its third stage in order to achieve fail-safe
defaults, in the cases when a DC experiences a failure, and, due to a design or imple-
mentation error, does not come to a binary decision, During this stage, the interceptor,
which originally delegated the process to the corresponding DC, renders any decision,
except “permit,” received from the DC to “deny” and thus reaches an authorization
verdict. If access has been denied, the corresponding exception is thrown to the
ASP.NET run-time, which translates it into an appropriate SOAP exception message.

8 K. Beznosov

4.3 Adaptable Information for Authorization Decisions

Besides credentials, PEs are supplied with other request-related information, which is
constructed into a permission. Thus, the authorization process determines whether a
permission should be granted to a subject given its credentials. It is the adaptable
construction of the permission that furthers the composability and customizability of
the architecture. A permission is constructed out of four distinct elements, as shown in
Figure 3. Examples are provided in Table 1 at the end of this subsection.

Fig. 3. Elements of the permission generated by the default permission factory

1. TargetName: the name of the target Web service can be represented by either the
URL or the .NET class name of the service implementation. By using the .NET
class name instead of the URL, all instances of a Web service application can
share the same authorization policy rules.

2. DomainName: the use of the domain classifier is borrowed from CORBA Secu-
rity [14] architecture, whose policy domains support different security require-
ments for implementations of same interfaces. In our architecture, optional do-
mains allow discrimination between those same implementations of a Web ser-
vice that have different access control requirements. Another intended purpose of
domains is to allow a logical grouping of several Web services, perhaps so that
they can share an authorization server or its policy database.

3. TargetAttributes: further differentiation among Web service instances is achieved
through an optional list of name-value pairs holding target attributes. For exam-
ple, a Web service representing a university course could have the course Id as
one of its attributes. The use of target attributes reduces the need for mixing au-
thorization and other security logic with business logic. These application-
specific attributes and the mechanism for obtaining them are directly based on
our prior work on Attribute Function (AF) [33, 34], overview of which is pro-
vided in Appendix B.

4. MethodName: since ASP.NET supports only RPC semantics, acceptable SOAP
messages have to specify the method of the corresponding .NET server class.

 Here’s Your LegoTM Security Kit 9

Table 1 shows examples of permissions. The construction of permissions is done
by a default permission factory, which can be replaced by a custom implementation
possibly producing permissions of other format and content.

Table 1. Examples of permissions

Permission Example Explanation
http://foobank.com/bar.asmx Only the URL is used
com.foobank.ws.Sbar/m1 Class and method names
D1/com.foobank.ws.Sbar /m1 Same but in domain “D1”
com.foobank.ws.Sbar/owner=smith Class name and attribute
D1/com.foobank.ws.Sbar/owner=smith/m1 Domain, class, attribute, method

Fig. 4. Key elements of the architecture: black elements are replaceable, and grey elements are
modifiable by their creators

10 K. Beznosov

4.4 Fine-Grained Replaceability

The flexibility and extensibility of the architecture is achieved in part by designing
most of its elements to be replaceable. Any of the black boxes in Figure 4 can be
replaced by a version that comes with the implementation or by a version produced by
application developers or owners.

Custom versions of the grey boxes are subject to the control by those modules that
create them. Other architectures, e.g., CORBA Security, also make some of their parts
replaceable. The novelty of our approach is the level of replaceable parts’ granularity. In
CORBA Security, for instance, authorization logic has to be replaced as a whole,
whereas in our architecture, one can selectively replace specific PEs and/or a DC. Addi-
tionally, each Web service in the same container can be protected by a different set of
replaceable elements, which is not the case with CORBA Security implementations.

To demonstrate the ability of our architecture to be customized through different
compositions of black-box implementations we provide examples of implementing
two different policies.

4.4.1 Example 1: University Course Web Service
Consider a simplified hypothetical application that enables online access to university
courses as Web services. Let us assume that the following is a relevant to the example
fragment of the application security policy to be enforced:

Policy 1:

1. All users should authenticate using HTTP-BA.
2. Anybody can lookup course descriptions.
3. Registration clerks can list students registered for the course and (un)register

students.
4. The course instructor can list registered students as well as manage course as-

signments and course material.
5. Registered students can download assignments and course material, as well as

submit assignments.

Given that each course is represented by a separate instance of a Web service, the fol-
lowing is a configuration of our architecture that enables the enforcement of Policy 1.

Configuration 1:

 An HTTP-BA CredentialRetriever CR1 extracts the user name and password
from the HTTP request that carried the corresponding SOAP request.

 A custom TargetAttributeRetriever provides the course number in a form of an
attribute, e.g. CourseId=EECE412.

 The default PermissionFactory is configured to compose permissions with the
qualified class name of the .NET class, as a TargetName, the corresponding
method name, and the attributes provided by the custom retriever. For example:
‘ca.ubc.CourseManagment.SimpleCourse/CourseId=EECE412/GetDescription’.
No domain name is used in this configuration.

 Here’s Your LegoTM Security Kit 11

 A prebuilt PolicyEvaluator PE1 grants permissions to any request on publicly ac-
cessible methods. In the case of Policy 1, there is one public method, Get-
CourseDescription.

 A custom PolicyEvaluator PE2 is programmed and configured to make authori-
zation decisions according to the rules informally described as follows:

1. Permit users in role ‘registration clerk’ to access methods ‘ListStudents’,
‘RegisterStudent’ and ‘UnregisterStudent’.

2. Permit users in role ‘instructor’ whose attribute ‘CourseTaught’ contains the
course listed in Permission.TargetAttributes.CourseId to list registered stu-
dents, manage course assignments and material.

3. Permit users in role ‘student’ whose attribute ‘RegisteredCourses’ contains the
course listed in Permission.TargetAttributes.CourseId to list registered stu-
dents, manage course assignments and material.

Note that user roles and other attributes are retrieved by the PE during or after it
validates the credential received from HTTP-BA CredentialRetriever. This step
is not discussed since it is very specific to the particular student and employee da-
tabases used by the university and is irrelevant here.

 A pre-built DecisionCombinator of type Permit Overrides, which grants access
if either PE grants access.

4.4.2 Example 2: Human Resource Web Service for International Organization

Now consider a multinational company that has its divisions in Japan, Canada, Aus-
tria, and Russia. Each division has its own department of human resources (HR). The
company rolls out a Web service application in all of its divisions to provide online
access to employee information. Each division has one or more Web services provid-
ing HR information of that division. The company establishes the following security
policy for accessing this application.

Policy 2:

1. Only users within the company’s intranet or those who access the service over
SSL and have valid X.509 certificates issued by the company should be able to
access the application.

2. Anybody in the company can look up any employee and get essential informa-
tion about her/him (e.g., contact information, title, and names of the manager and
supervised employees).

3. Employees of HR departments can modify contact information and review sal-
ary information of any employee from the same division.

4. Managers of HR departments can modify any information about the employees
of the same department.

Configuration 2:

 Same CredentialsRetriever CR1 as in Example 1.
 Another CredentialRetriever CR2 obtains an SSL client certificate from the cor-

responding HTTPS connection.

12 K. Beznosov

 A prebuilt simple DomainRetriever that always returns same statically config-
ured domain name. The domain name designates the division for which HR in-
formation is served by the Web service instance, e.g., ‘Japan’.

 The default PermissionFactory is configured to compose permissions with the
domain name, qualified class name of the .NET class, as a target name, and the
corresponding method name. No target attributes are used in this case. For ex-
ample: ‘Japan/com.mega-foo.EmployeeInfo/GetContactInfo’.

 Same prebuilt PolicyEvaluator PE1 as in Example 1. In the case of Policy 2,
there are four public methods: FindEmployee, GetEmployeeInformation,
GetEmployeeManager, GetSupervisedEmployees.

 A prebuilt PolicyEvaluator PE3 that permits access to any request made from a
machine with an IP address in the range of the company’s intranet addresses.

 A custom-built PolicyEvaluator PE4 that permits access to any request made by a
user with valid X.509 certificate issued by the company. This certificate, if avail-
able, is retrieved by CR2.

 A generic RBAC PolicyEvaluator PE5 that permits invocation of different meth-
ods based on the role of the user:
1. Any user with role ‘hr employee’ can invoke methods that modify contact in-

formation and review salary.
2. Any user with role ‘hr manager’ can invoke methods permitted to users with

role ‘hr employee’ as well as methods that modify employee’s salary, title,
and names of the manager and supervised employees.

 A custom-built PolicyEvaluator PE6 that permits access to any authenticated
user, whose attribute ‘Division’ has the same value as the domain in the per-
mission.

The high degree of the architecture composability allows reusing two prebuilt (1 &
3) and one generic (RBAC) PE (5) out of five. Among the other two, PE4 is simple to
build using certificate validation tools and libraries, and PE6 requires marginal effort.
The DC can be implemented in one ‘if’ structure.

4.5 Configuration Scalability, Extensibility, and Reuse

Extensible and scalable configuration turned out to be critical in order for our archi-
tecture to support the composition of more complex A&A functionality from basic,
reusable, building blocks, and, at the same time, carry low administration or run-time
overhead. We developed a simple hierarchical language for defining and configuring
various elements of the A&A decision logic as well as the protection policies com-
posed of them. The relationships among these elements and the policies are shown in
Figure 5.

A custom-built DecisionCombinator, which grants access according to the fol-
lowing formula: (PE3 ∨ PE4) ∧ (PE1 ∨ (PE5 ∧ PE6)). That is, a request is permit-
ted only to intranet users or those with valid company’s certificate (PE3 ∨ PE4),
provided that either the requested method is public (PE1) or an authorized HR
person is accessing a record of the employee from same division (PE5 ∧ PE6).

 Here’s Your LegoTM Security Kit 13

Fig. 5. Simplified model of the configuration elements with default cardinality “0..*”

A protection policy can simply be viewed as a collection of specific credential re-
trievers; Pes; DC; target and domain and target attribute retrievers; as well as a per-
mission factory, which is defined in other sections of the configuration. Since all these
elements are defined independently of the policies and have unique names, they can
be referenced by more than one policy. Governing Policy (GP) specifies which par-
ticular policy is used for controlling access to a Web service. Thus, multiple policies
can be prepackaged and used for quickly switching the behavior of the protection
mechanisms from one predefined mode to another.

Illustrated in Figure 6, the hierarchal nature of web.config parsing semantics en-
ables a high degree of scalability without losing a fine level of granularity in the con-
trol over subsets of (or individual) Web services. The GP defined in the web.config of
the ASP.NET root determines the protection of all those Web services, for which no
web.config file between the service and the root directory overrides it.

Fig. 6. The association among Web services, their implementations, directories and configura-
tion files

The configuration extensibility and reusability is achieved through two design de-
cisions: First, any web.config file down in the ASP.NET directory hierarchy can over-
ride GP, or define any new element, including new policies as long as the name of

14 K. Beznosov

this element has not been used in an ascendent web.config.1 Second, to reduce the
amount of effort required for creating policy variations, we also introduced single
inheritance mechanism for policy definitions. This way, a policy could reuse most of
another policy’s definition and override just few elements.

5 Discussion

Besides the practical value for developers and owners of Web services hosted by
ASP.NET containers, the work on the A&A architecture demonstrated two points
worth of discussion: First, the architecture of protection mechanisms for distributed
applications can be designed as a collection of easy-to-create building blocks with
multiple places for extending and altering the overall behavior. Hopefully, this work
will encourage middleware and software engineering communities to look into the
feasibility of similar designs for other mechanisms and services.

Second, there is an alternative to complex, almost universal (and therefore expen-
sive to build and administer) general-purpose authorization engines. This alternative
is lightweight, simple to construct, and provides an inexpensive way to run authoriza-
tion modules, each of which is dedicated to evaluating very specific subset of authori-
zation rules. The decisions from these modules are combined with yet other light-
weight specialized modules. As a result, for every distinct authorization policy, a
specialized version of the authorization engine is composed out of such modules.

What are the benefit(s), if any, of avoiding general-purpose authorization languages
and engines for run-time decisions? We can identify several. To start, no matter how
completely a language is supported by an authorization engine, there will always a case
that it does not support. Even though most modern authorization languages and engines
come with extension points, we are not aware of any instance that would enable simple
and efficient synthesis of authorization run-time logic out of existing and new logic.

Composing run-time authorization logic from lightweight specialized modules also
enables “pay-for-what-you-use” implementations. The run-time and the administra-
tive overheads become proportional to the complexity of the policies enforced and not
to the complexity of all the possible policies supported. Last, but not least, the learn-
ing curve for administering, as well as the effort for testing authorization logic com-
posed out of simple modules is again believed to be proportional to the complexity of
the enforced policy. By avoiding large generic decision engines and replacing them
with the architectures and tools for composing customized engines, developers can
better meet the goals for short times to market and for developing solutions useful in a
wide range of application domains.

Our approach is not in conflict with the principle of designing a system with secu-
rity in mind from the beginning. The design of distributed applications still has to take
into account the security requirements as well as the capability of the security mecha-
nisms and the underlying middleware technology. For instance, unless each employee
record in Example 2 is designed to correspond to a separate distributed object, it
would be impossible to allow employees to change their own contact information

1 By “ascendent web.config” we mean a web.config file located down in the directory

hierarchy.

 Here’s Your LegoTM Security Kit 15

without mixing authorization and application logic. What our approach aims at is
reducing the effort required to create and adjust adequate A&A controls in the pres-
ence of changes to security policies.

5.1 What About AOSD?

The two points discussed above also apply to the aspect-oriented software develop-
ment (AOSD) methods. Even though AOSD is mostly about dealing with crosscutting
concerns that cannot be cleanly modularized, the question of designing decision logic
remains. The approach of Lego -like building blocks combined with a flexible and
extensible base for composition, as well as the means of creating new blocks can be
employed for designing whatever parts of the aspect in question that the AOSD tech-
niques and tools are able to decouple from the business logic. This also pertains to the
choice between large generic policy engines and those composable from specialized
light-weight modules.

It is not surprising that the reverse is also applicable, i.e., the implementations of
the architectures like the one presented in this paper could benefit from AOSD tech-
niques. An example can be found in [35] which proposes an AOSD-based approach
for improving the flexibility and extensibility of security systems at finer levels of
granularity than what OO techniques can offer.

6 Conclusions

In this paper, we presented a flexible and extensible authentication and authorization
architecture for protecting ASP.NET Web services. While presenting the architecture,
we demonstrate the feasibility and benefits of a) the use of lightweight building
blocks along with the means for composing them into specialized solutions as well as
adding new blocks with custom logic, and b) composing run-time logic for authoriza-
tion decisions from small encapsulated units of specialized logic. The architecture has
been implemented in an actual security solution.

References

1. Schmidt, D.C. and C. Cleeland, Applying patterns to develop extensible ORB middleware.
IEEE Communications Magazine, 1999. 37(4): p. 54-63.

2. Singhai, A., A. Sane, and R.H. Campbell. Quarterware for middleware. in 18th Interna-
tional Conference on Distributed Computing Systems. 1998. Amsterdam, Netherlands:
IEEE Computer Society.

3. Wang, Y.-M. and W.-J. Lee. COMERA: COM extensible remoting architecture. in Pro-
ceedings of COOTS: 4th USENIX Conference on Object-Oriented Technologies and Sys-
tems, 27-30 April 1998. 1998. Sante Fe, NM, USA: USENIX Assoc.

4. Hamilton, G., M.L. Powell, and J.G. Mitchell, Subcontract; A flexible base for distributed
programming. Operating Systems Review (ACM): Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, Dec 5-8 1993, 1993. 27(5): p. 69-79.

16 K. Beznosov

5. Balasubramanian, K., et al. Towards composable distributed real-time and embedded
software. in WORDS 2003: 8th International Workshop on Object-oriented Real-Time De-
pendable Systems, 15-17 Jan. 2003. 2003. Guadalajara, Mexico: IEEE.

6. Othman, O., C. O'Ryan, and D.C. Schmidt, Designing an adaptive CORBA load balancing
service using TAO. IEEE Distributed Systems Online, 2001. 2(4).

7. Nahrstedt, K., et al., QoS-aware middleware for ubiquitous and heterogeneous environ-
ments. IEEE Communications Magazine, 2001. 39(11): p. 140-8.

8. Venkatasubramanian, N., Safe 'composability' of middleware services. Communications of
the ACM, 2002. 45(6): p. 49-52.

9. Krishnamurthy, S., W.H. Sanders, and M. Cukier, An Adaptive Quality of Service Aware
Middleware for Replicated Services. IEEE Transactions on Parallel and Distributed Sys-
tems, 2003. 14(11): p. 1112-1125.

10. Crowcroft, J., et al., Channel islands in a reflective ocean: large-scale event distribution in
heterogeneous networks. IEEE Communications Magazine. 40(9): p. 112-15.

11. Yang, J. and G.E. Kaiser, JPernLite: extensible transaction services for the WWW. IEEE
Transactions on Knowledge and Data Engineering, 1999. 11(4): p. 639-657.

12. Houston, I., et al., The CORBA Activity Service Framework for supporting extended trans-
actions. Software - Practice and Experience, 2003. 33(4): p. 351-73.

13. Gittler, F. and A.C. Hopkins, The DCE Security Service. Hewlett-Packard Journal, 1995.
46(6): p. 41-48.

14. OMG, CORBAservices: Common Object Services Specification, Security Service Specifi-
cation v1.8. 2002, Object Management Group, document formal/2002-03-11.

15. Sun, Java Authentication and Authorization Service (JAAS). 2001, Sun Microsystems.
16. Sun, Java Authorization Contract for Containers. 2002.
17. Chapin, S.J., et al., New model of security for metasystems. Future Generation Computer

Systems, 1999. 15(5): p. 713-722.
18. Andersen, A., et al. Security and middleware. in WORDS 2003: 8th International Work-

shop on Object-oriented Real-Time Dependable Systems, 15-17 Jan. 2003. 2003. Guadala-
jara, Mexico: IEEE.

19. Beznosov, K., et al. A Resource Access Decision Service for CORBA-based Distributed
Systems. in Annual Computer Security Applications Conference. 1999. Phoenix, Arizona,
USA: IEEE Computer Society.

20. OMG, Resource Access Decision Facility. 2001, Object Management Group.
21. Jajodia, S., et al., Flexible support for multiple access control policies. ACM Transactions

on Database Systems, 2001. 26(2): p. 214-60.
22. Siewe, F., A. Cau, and H. Zedan. A compositional framework for access control policies

enforcement. in Proceedings of the 2003 ACM Workshop on Formal Methods in Security
Engineering, FMSE'03, Oct 30 2003. 2003. Washington, DC, United States: Association
for Computing Machinery.

23. Microsoft, Building Secure ASP.NET Applications: Authentication, Authorization, and Se-
cure Communication. 2002: Microsoft Press.

24. Hartman, B., et al., Mastering Web Services Security. 1st ed. 2003, New York: John Wiley
& Sons, Inc.

25. Beznosov, K. Protecting ASP.NET Web Services: Experience Report. in preparation.
2004.

26. Microsoft, Altering the SOAP Message Using SOAP Extensions. 2002.
27. Fleury, M. and F. Reverbel. The JBoss extensible server. in ACM/IFIP/USENIX Interna-

tional Middleware Conference. 2003. Rio de Janeiro, Brazil: Springer-Verlag.

 Here’s Your LegoTM Security Kit 17

28. Wang, N., et al., Evaluating meta-programming mechanisms for ORB middleware, in
IEEE Communications Magazine. 2001. p. 102-113.

29. Baldoni, R., C. Marchetti, and L. Verde, CORBA request portable interceptors: analysis
and applications. Concurrency and Computation Practice & Experience, 2003. 15(6): p.
551-579.

30. Narasimhan, N., L.E. Moser, and P.M. Melliar-Smith, Interceptors for Java Remote
Method Invocation. Concurrency Computation Practice and Experience, 2001. 13(8-9): p.
755-774.

31. Barkley, J., K. Beznosov, and J. Uppal. Supporting Relationships in Access Control Using
Role Based Access Control. in Fourth ACM Role-based Access Control Workshop. 1999.
Fairfax, Virginia, USA.

32. Sandhu, R., et al., Role-Based Access Control Models. IEEE Computer, 1996. 29(2):
p. 38-47.

33. Beznosov, K. Object Security Attributes: Enabling Application-specific Access Control in
Middleware. in 4th International Symposium on Distributed Objects & Applications
(DOA). 2002. Irvine, California, USA: Springer-Verlag.

34. OMG, Security Domain Membership Management Service, Final Submission. 2001, Ob-
ject Management Group.

35. Gao, S., et al. Applying Aspect-Orientation in Designing Security Systems: A Case Study.
in The Sixteenth International Conference on Software Engineering and Knowledge Engi-
neering. 2004. Banff, Alberta, Canada.

Appendix A. Overview of Resource Access Decision Architecture

With the RAD architecture, an application requests an authorization decision from
a RAD authorization service and enforces the decision. A RAD service is com-
posed of the following components (Figure 7): The AccessDecisionObject (ADO)
serves as the interface to RAD clients and coordinates the interactions between
other RAD components. Zero or more PolicyEvaluators (PEs) perform evaluation
decisions based on certain access control policies that govern the access to a
protected resource. The DecisionCombinator (DC) combines the results of the
evaluations made by potentially multiple PEs into a final authorization decision by
applying certain combination policies. The PolicyEvaluatorLocator (PEL), for a
given access request to a protected resource, keeps track of and provides refer-
ences to a DC and potentially several PEs, which are collectively responsible for
making the authorization decision to the request. The DynamicAttributeService
(DAS) collects and provides dynamic attributes about the client in the context of
the intended access operation on the given resource associated with the provided
resource name.

Figure 7 shows interactions among components of authorization service:

1. The authorization service receives a request via the ADO interface.
2. The ADO obtains object references to those PEs associated with the resource

name in question and an object reference for the responsible DC.
3. The ADO obtains dynamic attributes of the principal (client) in the context of the

resource name and the intended access operation.

18 K. Beznosov

4. The ADO delegates an instance of DC for polling the PEs (selected in Step 2).
5. The DC obtains decisions from PEs and combines them according to its policy.
6. The decision is forwarded to the ADO, which returns it to the application.

Further details on RAD architecture could be found in [19, 20].

an Access Decision
Object : AccessDecision

an Application
System

a Locator : Policy
EvaluatorLocator

an Evaluator :
PolicyEvaluator

an Attribute Service :
DynamicAttributeService

a Combinator :
DecisionCombinator

2: get_policy_decision_evaluators(ResourceName)

3: get_dynamic_attributes(AttributeList, ResourceName, Operation)

4: combine_decisions(ResourceName, Operation, AttributeList, PolicyEvaluatorList)

1: access_allowed(ResourceName, Operation, AttributeList)

6:

5: * evaluate(ResourceName, Operation, AttributeList)

Fig. 7. RAD interaction diagram

Appendix B. Overview of Attribute Function Architecture

The concept of the Attribute Function (AF), as an addition to the traditional decision
and enforcement functions, has been proposed in [33]. Its application to CORBA was
developed as well [34].

AF has simple syntax: it accepts (middleware-specific) data that are necessary for
identifying the state of the target object and returns a set of application-specific attrib-
utes of that object. The target object state is necessary for retrieving such object meta-
data. Since the semantics of object attributes is very specific to the application being
protected, AF is provided by the application and not by the middleware or security
layers.

The introduction of the AF in the security mechanism design for distributed appli-
cations is expected to enable the use of application-specific factors in security policy
decisions without coupling enforcement and decision functions with the application.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 19 – 30, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integration of a Text Search Engine with a Java
Messaging Service

Justin Almquist1, Ian Gorton2, and Jereme Haack1

1 Information Sciences and Engineering, Pacific Northwest National Lab,
Richland, WA 99352, USA

2 Empirical Software Engineering Group, National ICT Australia,
Australian Technology Park, Eveleigh, NSW 1430, Australia

Abstract. Large-scale information processing applications must rapidly search
through high volume streams of structured and unstructured textual data to
locate useful information. Content-based messaging systems (CBMSs) provide
a powerful technology platform for building such stream handling systems.
CBMSs make it possible to efficiently execute queries on messages in streams
to extract those that contain content of interest. In this paper, we describe efforts
to augment an experimental CBMS with the ability to perform efficient free-
text search operations. The design of the CBMS platform, based upon a Java
Messaging Service, is described, and an empirical evaluation is presented to
demonstrate the performance implications of a range of queries varying in
complexity.

1 Introduction

Efficiently finding useful data in the ever-growing sources of digital information is a
highly challenging research problem. Many applications must search for messages or
packets of information located, for example, in network protocol traffic or email
messages. Such applications are typically known as data stream processing
applications.

Processing continuous data streams [1] poses some unique problems. A streams
processing environment must assume that the messages it receives are transient, and
cannot all be stored for rapid post-processing. Although some approaches attempt to
offer rich query languages for long-running continuous queries on streams [2], these
systems are still essentially research prototypes.

Content-based messaging systems (CBMSs) have proven practical technology
platforms for building data stream processing applications. A CBMS employs some
mechanism for querying the content of an individual message and extracting
messages from the stream that satisfy one or more query. Systems such as Elvin [3],
Gryphon [4], XMLBlaster [5] and Siena [6] all achieve similar forms of content-based
message notification on textual data arriving in message streams. The querying
capabilities of these systems do however vary considerably, but in general most
utilize a relatively simple query language.

In addition, some commercial, standards-based technologies also can provide
content-based messaging. Implementations of the CORBA Notification Service

20 J. Almquist, I. Gorton, and J. Haack

specification and Java Messaging Service (JMS) API include the ability to select or
filter messages using a query language based on SQL-92. These technologies have
multiple implementations, including open source, and are widely utilized and
deployed in applications.

In [9], we describe our efforts to improve the performance of an open source JMS
implementation to provide scalable performance when multiple simultaneous queries
must be evaluated against each message in a stream. Algorithms similar to those
described in [4, 6, 10] are empirically demonstrated to provide greater than order of
magnitude performance improvement and significantly improved scalability when
compared to the original JMS implementation.

In practice however, the query language supported by the JMS has proven too
simple to be of great utility in application environments. Therefore, this paper
describes the extension of our JMS-based CBMS to integrate with an off-the-shelf
high performance text search engine. We describe the approach taken to extending the
JMS query capability and utilizing the text processing engine. An empirical
evaluation of the performance of the resulting platform clearly shows the feasibility of
the approach. Further performance analysis factors out the influence of the underlying
JMS implementation, and the results display potential for achieving even greater
performance from a CBMS platform built from a combination of a JMS and text
search engine.

2 A JMS-Based Content-Based Message System

The JMS is a mandatory part of the Java 2 Enterprise Edition (J2EE) platform. The
JMS specification defines a set of Java interfaces and associated semantics for an
asynchronous publish-subscribe messaging system. Individual vendors implement the
JMS by building a JMS provider that supports the JMS interfaces. This can be done
by wrapping an existing messaging technology such as MQSeries, or by
implementing the JMS semantics in Java.

JMS subscribers can specify which messages they wish to receive from a topic
based on a message selector. The JMS provider ensures that only messages that match
the criteria in the message selector are delivered to the subscriber. Message selectors
are defined by a subscriber on a per topic basis. The selector language is based on a
subset of the SQL92 conditional expression syntax. This includes basic conditional
and logical expressions, as well as more sophisticated operators such as LIKE.

[9] describes how we extended the open source JBoss JMS implementation to
form a CBMS that can efficiently process multiple streams of data. In summary, the
extensions are briefly described below.

Figure 1 depicts the basic architecture for the CBMS platform. The roles of the
four key subsystems are as follows:

Data Source Adapter: The Data Source Adapter (DSA) subsystem has several
responsibilities. It first inputs messages from the data source in their native format, and
transforms them in to a well-defined XML message. In addition, it generates a data
signature for the message, which is encapsulated in a Java object. A data signature is a
mathematical representation of the textual message, and can be used by the CBMS

 Integration of a Text Search Engine with a Java Messaging Service 21

Data
Source

Raw
Text
Format

Content-
Based

Matching
Engine XML

Notification

Engine

Data Source

Adapter

Matches

Queries

Query

Submission

Fig. 1. Overview of CBMS Architecture

engine to efficiently satisfy queries on the message’s content. Finally, it publishes the
XML message and associated signature to the CBM engine on a defined topic.

CBM Engine: The CBM engine receives messages published by one or more DSA’s,
with one topic per data source. It also receives queries from the Query Submission
component. Multiple queries can be registered with a single topic, and hence each
message published on a topic must be evaluated against every query. Messages that
match one or more queries are sent to the notification engine.

Query Submission: The Query Submission subsystem is responsible for managing
the set of queries across the topics handled by the CBM engine. It comprises a base
API and a set of user tools for submitting, browsing, deleting and optimizing queries.

Notification Engine: This receives messages that match user queries and delivers
them to the respective users. Users may specify a delivery mechanism, such as email,
store in a database, and so on. The Notification Engine therefore manages all aspects
of notification and message delivery, freeing the CBM subsystem from this
responsibility. Additionally, the Notification Engine is responsible for persisting
matched messages. This allows relations between users, queries, and messages to be
established such that end users can determine which queries caused certain messages
to be matched and saved.

The core CBM engine comprises the modified JBoss JMS. The JMS was modified
internally to exploit new algorithms for rapidly evaluating message selectors
(queries). The algorithms basically break down each message selector (query) in to a
set of individual elements, which are termed cachable units. When a selector is
evaluated against the message content, the result of each cacheable unit is stored in a
cache data structure, which maps a cacheable unit to a Boolean result.

As each message is tested against all the other registered selectors, the cache is
accessed in order to locate any shared selector elements that have already been
evaluated. When a cacheable unit is associated with a result for this message, its
result is simply used in evaluating the current selector. Hence, the commonality

22 J. Almquist, I. Gorton, and J. Haack

Messages/Second vs. Selector
Expense

100 Subscribers

0

200

400

600

800

1000

1200

1400

1 2 3 4

Selector Expense

M
es

sa
g

es
 R

ec
ei

ve
d

 p
er

 S
ec

o
n

d

CBMS

JBoss 3.0.6

Fig. 2. CBMS message throughput with 100 Subscribers and increasing complexity in message
selector evaluation

between selectors is exploited to reduce the number of queries that must be satisfied,
and produce greater message throughput. Figure 2 illustrates the improved
performance that the CBMS platform achieves. These are more results are fully
explained in [9].

3 Extending the JMS Query Language

3.1 The Need for Powerful Text Search

In discussions with potential users of the CBMS platform, it became clear that
existing commercial technologies, while slower, expensive and heavyweight, offered
much greater flexibility and power in free-text search queries. We therefore decided
to investigate how the CBMS platform could incorporate a richer query language in
order to increase the relevance of messages delivered to users. At the same time, it
remained imperative that the query language did not degrade significantly the
performance and scalability gains already achieved. After investigating the
capabilities of existing technologies in the user’s application domain, our goal became
to extend the current JMS query language with greater free-text searching capabilities.

High performance text searching engines are highly specialized technologies, and
hence writing our own was not a sensible option. An investigation of available
technologies led us to decide to integrate the open source Lucene1 full-featured text
search engine into the CBMS. Lucene supports a simple API, is extensible, has small

1 (http://jakarta.apache.org/lucene/docs/index.html)

 Integration of a Text Search Engine with a Java Messaging Service 23

heap and index size requirements, and claims high performance and scalability. It also
has the following extensive text query features2:

• Terms - A Single Term is a single word such as "test" or "hello". A Phrase is a
group of words surrounded by double quotes such as "test hello".

• Wildcard Searches – Using the ‘?’ will match a single character, such as “te?t”.
Using the ‘*’ will match multiple characters, such as “test*”.

• Fuzzy Searches - The fuzzy search features uses the tilde, "~" symbol at the end of
a Single word Term. For example, a query with “roam~” would return terms like
foam and roams.

• Proximity Searches - Lucene supports finding words that are within a specific
distance away from each other.

• Boolean Operators – The traditional Boolean operators of “AND”, “OR”, and
“NOT are supported, as well as the “+” (required) and “-“ (prohibit) operators.

3.2 Messaging with Lucene

In order to investigate the implications of integrating Lucene into the CBMS, we
decided to initially extend the query language supported by the JMS standard. The
JMS specification’s keywords were consequently extended with a new keyword,
INCLUDES. Extending the specification is attractive, as it allows the CBMS to still
meet the JMS specification, but at the same time extends the JMS functionality for
applications that require advanced query behavior.

To simplify the implementation, only queries using the INCLUDES keyword
would result in a call to the Lucene API. Hence the internals of the query processing
implementation of the CBMS were left unchanged, and the overheads of utilizing
Lucene were only incurred when necessary.

Integrating Lucene also required design decisions to be made regarding Lucene’s
usage. The single largest impact on performance when using a text search engine is
the indexing of the source data. In normal modes of application, indexing is an
expensive process that requires analyzing many documents and writing the results of
the analysis to a disk-based index. Lucene incorporates a high performance indexing
mechanism; however any indexing scheme that would have to write files to disk
would be prohibitively slow and non-scalable.

Thus, it was determined to use memory based indexes instead of disk-based. This
exploited the same optimized indexing and avoided the overhead of disk I/O. This
design is especially appropriate since an index is created for every message, and can
be discarded when the message has been fully processed.

Another key design decision in exploiting the Lucene engine is the ability to index
a message once and run multiple sub-queries against the index. A complex query that
is typical in the CBMS application environment would comprise many grouped sub-
queries such as:

(body INCLUDES “flour”) AND (body INCLUDES “sugar”) AND
(body INCLUDES “peanuts”)

2 (http://jakarta.apache.org/lucene/docs/queryparsersyntax.html)

24 J. Almquist, I. Gorton, and J. Haack

Using Lucene, in our solution the message is indexed once, which is expensive,
and then each subsequent sub-query searches the index, which incurs a minimal cost.
This should lead to complex queries having approximately the same performance as
simple queries, which is an extremely desirable property for the CBMS.

One area that was not explored was that of the analyzer performance. Indexing
and subsequent searching in Lucene utilizes a class that implements a
StandardAnalyzer interface. Since analyzers are involved in all expensive operations
(indexing and searching) it is imperative that they are optimized. However, lack of
time prevented the further testing of different analyzers to measure performance
differences.

4 Performance Analysis of Text Queries

4.1 Test Case Description

In order to verify that the use of text search engine does not impact performance and
scalability of the CBMS, a series of performance tests were carried out. The same test
suite used to verify the improved JMS query engine [9] was used to measure and
quantify the performance impact of using the Lucene search engine. Our goal was to
demonstrate that the Lucene based text queries execute at least as fast as the original
JBoss implementation while providing expanded querying capabilities. Hence we
designed and executed 2 sets of equivalent tests to compare the performance of the
JBoss JMS executing LIKE queries with the CBMS features that exploited Lucene,
namely the INCLUDE queries.

The test suite creates multiple instances of publishers to simulate increasing
message loads. The same message is posted to the JMS topic that all subscribers
listen, thus creating an environment with known input data. For each message,
subscribers specify message selectors of varying complexity. For the JBoss JMS tests,
the selectors utilize the keyword LIKE along with wildcard indicators (“%”). The
Lucene engine in the CBMS is tested by selectors utilizing the INCLUDES keyword,
as well as the Lucene wildcard characters (“*”).

To explore the impact of the cost of evaluating individual selectors, the series of
tests uses selectors of varying complexity. At one extreme, very simple selectors that
are inexpensive to evaluate were tested. Subsequent tests used progressively more
complex selectors to examine the effects of their evaluation on the JBoss JMS and
CBMS with Lucene. These are explained below.

For the JBoss JMS tests, the least expensive is a query that runs against a small
text field, such as the subject field of an email. An example simple selector is:

Subject LIKE “%question%”

This simple selector is labeled selector expense level 1 in the presentation of the
performance results.

A slightly more expensive query is one that operates against a larger text field,
such as the body of the message. An example selector for this case is as follows:

 Body LIKE “%question%”

This type of selector is labeled selector expense level 2 in the results.

 Integration of a Text Search Engine with a Java Messaging Service 25

A third level of selector expense involves searching within a much larger text
field, but where the match is near the end of the text. The length of the text greatly
influences the speed at which wildcards can execute, thus making the field larger will
cause the operation to be much more expensive to execute. An example selector for
this case, and labeled selector expense level 3 in the results is:

 Body LIKE “%garlic%”

The fourth most expensive operator for the test suite is one that searches a large
block of text using two sub-queries with wildcards to locate certain words. This
operation is more expensive because both wildcard expressions must search the entire
block of text to determine if a match is made. An example selector for this case,
which is labeled selector expense level 4 in the results is:

Body LIKE “%garlic%” AND
Body LIKE “%question%”

The fifth selector level increases the number of sub-queries to three, which will

require all three words to be found in the large block of text. An example for selector
level 5 is:

Body LIKE “%garlic%” AND
Body LIKE “%question%” AND
Body LIKE “%afternoon%”

The most expensive selector level is a query that finds many words in a given text

block. This type of complex query is expected to be typical in the environment the
CBM is being constructed for. An example for Selector level 6 is:

Body LIKE “%garlic%” AND
Body LIKE “%question%” AND
Body LIKE “%afternoon%” AND
Body LIKE “%freezing%”

Equivalent queries were also constructed for the CBMS with Lucene, utilizing the

INCLUDE keyword instead of LIKE. Hence, when the two sets of queries are
executed on identical data, the same set of results is produced.

The performance tests were run on hardware with the following configuration:

• Publisher/Subscriber Node: Pentium III 1.3 GHz with 768MB of RAM running

Windows XP and Java 1.3.1
• CBMS/JBoss Server: Quad 2GHz Pentiums running Windows 2000 Server and

Java 1.3.1

To alleviate clock synchronization issues in the performance measurement, all
publishers and all subscribers were run on the same machine. Additionally, the
publishers and subscribers were run within the same Java Virtual Machine, but on

26 J. Almquist, I. Gorton, and J. Haack

different threads. The CPU utilization was low however, and did not influence tests
results. For all test cases, there were 10 publishers publishing at the maximum
sustainable throughput rate [8], which ensures messages do not build up in the JMS
queues and degrade performance. The number of subscribers is listed for each test
case.

Since the focus of the CBMS engine is to handle large amounts of streaming data,
it is assumed that speed should be favored over reliability when it comes to message
delivery. Consequently, all messages were published with a delivery mode of
NON_PERSISTENT, which indicates that the JMS provider does not need to
persistently store the message to ensure delivery in the case of server failure.
Moreover, this also eliminates any decreases in performance due to disk access and
allows the test to concentrate solely on the message selector processing algorithm.

4.2 Results

Figures 3 and 4 show the performance results for increasing numbers of subscribers.
For these cases, 100% of the messages sent by the publishers match the selector for
each subscriber, thus all messages are sent out to subscribers.

In Figure 3, for the least inexpensive selector, the CBMS and JBoss have little
difference in respective throughput. However, as selectors increase in complexity, the
performance of JBoss degrades rapidly from 384 messages per second with the
simplest selector to 28 messages per second for the most complex selector. Thus,
JBoss’ performance drops by approximately 93%. Alternatively, the CBMS with the
Lucene engine peaks at 385.6 messages per second for the simplest selector, and
slows to 174.48 messages per second for the most complex, which represents only a
55% drop in performance.

Messages/Second vs. Selector Expense
10 Subscribers

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

Selector Expense

M
es

sa
g

es
 R

ec
ei

ve
d

 p
er

 S
ec

o
n

d

CBM w/Lucene

JBoss 3.0.6

Fig. 3. Throughput with 10 subscribers

 Integration of a Text Search Engine with a Java Messaging Service 27

Messages/Second vs. Selector Expense
50 Subscribers

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Selector Expense

M
es

sa
g

es
 R

ec
ei

ve
d

 p
er

 S
ec

o
n

d

CBM w/Lucene

JBoss 3.0.6

Fig. 4. Throughput with 50 subscribers

As the number of subscribers increases (Figure 4), the CBMS with Lucene clearly
outperforms the original JBoss. Moreover, the original JBoss engine is completely
unable to handle increasingly complex selectors and degrades 98% while the CBMS
with Lucene drops in performance by only 67%.

These test results clearly demonstrate that the introduction of the Lucene search
engine as the selector matching engine does not negatively impact the performance of
the original JBoss implementation. Rather, Lucene performs better than the original
JBoss implementation in terms of throughput and scalability. Thus, the original goal
of increasing query expressiveness in order to improve message matching has been
achieved with no penalties in terms of performance or scalability.

4.3 Analysis

The original JBoss wildcard engine is implemented by a regular expression package.
Essentially, the selector is converted to a regular expression and then passed on to the
regular expression library to be handled. However, regular expressions are quite
expensive to calculate and this limitation clearly shows as the complexity of the
selector increases.

Conversely, the CBMS with Lucene performance does not degrade so severely as
the selector complexity increases. This is due to the fact that the matching engine
uses Lucene to create an index for each message. Then, each sub-query against that
message is run against the original index. The cost of searching against an index is
much less than the cost of evaluating a regular expression. Thus, the performance of
CBMS with Lucene is dominated by the cost of creating the index for each message.

Therefore, the benefit of utilizing Lucene for complex selectors combined with the
earlier selector caching algorithms make for a fast, scalable platform for content-
based matching.

28 J. Almquist, I. Gorton, and J. Haack

5 Analyzing Lucene Performance

Another test suite was developed to measure the differences between Lucene and the
CBMS with Lucene. The aim was to assess the maximum performance that might be
achievable with Lucene, and quantify the overheads introduced by the underlying
JBoss JMS platform.

To this end, one test environment was setup in which text messages are handled
by the CBMS utilizing JMS publishers and subscribers (as described earlier). A
second test environment simply delivered messages to a Java program that called the
Lucene engine. The latter hence aimed to illustrate the performance potential of
Lucene without any influence from the JMS.

The same input messages were used for both environments. Likewise, the same
selectors were setup for the content based matching algorithms, with varying selector
complexities.

Table 1 shows the selectors used.

Table 1. Selector Complexities

Selector 1 subject INCLUDES 'atheism'
Selector 2 body INCLUDES 'might'
Selector 3 body INCLUDES 'angry'

Selector 4
body INCLUDES 'might' AND
body INCLUDES 'angry'

Selector 5

body INCLUDES 'might' AND
body INCLUDES 'angry' AND
body INCLUDES 'important'

Selector 6

body INCLUDES 'strange' AND
body INCLUDES 'important' AND
body INCLUDES 'might' AND
body INCLUDES 'angry'

Both tests were executed on the same hardware platform3, and all test components

were executed on the same machine. Figure 5 shows the results obtained.
The results starkly illustrate the JMS implementation overhead. For this set of test

data and queries, the Lucene search engine is able to process 694.52 messages per
second at the lowest selector complexity, while the CBMS with Lucene is only able to
sustain 184.52 messages per second. This represents a 73% performance degradation.

At the time of writing, we have not had time to investigate thoroughly the cause of
the overheads in the JBoss JMS. However, in associated tests with other JMS
platforms, greater JMS message throughput has been observed. Hence we have a
good degree of confidence that a faster JMS implementation is possible, and that such
an implementation may be able to fully exploit the performance potential of the
Lucene engine.

3 Pentium IV 3 GHz with 1GB of RAM running Windows XP and Java 1.3.1.

 Integration of a Text Search Engine with a Java Messaging Service 29

Messages/Second vs. Selector Expense
1 Subscriber

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

Selector Expense

M
es

sa
g

es
 R

ec
ei

ve
d

 p
er

 S
ec

o
n

d

CBM w/Lucene

Lucene (stand-alone)

Fig. 5. Lucene vs. CBMS with Lucene Results

6 Further Work and Conclusions

By introducing new algorithms in to a JMS implementation that exploit commonality
in message selectors, this project has clearly demonstrated the performance and
scalability gains that can be achieved. This is an extremely positive result that shows
how standard JMS implementations can be improved to make them faster for content-
based messaging.

In this paper, we have demonstrated the feasibility of further integrating a full-
featured text search engine, Lucene, with a JMS implementation. Empirical testing
shows that Lucene can provide excellent, scalable performance. This gives us
confidence that we can go on to implement a CBMS based upon the messaging
features of a JMS combined with extensions of the JMS query capability to exploit
powerful full-text searching.

We are continuing to explore content-based matching with JMS infrastructures.
To this end, we are performing a set of experiments that attempt to factor out the
transport cost of a particular JMS. This will enable us to directly compare the costs of
our content-based text matching engine with those of several JMS implementations.
We also intend to scale our CBMS platform to run across a cluster of machines to
ensure a large number of subscriptions can be handled.

Acknowledgements

This work has been funded by PNNL’s Energy Sciences & Technology Directorate
Lab Directed Research & Development Program.

National ICT Australia is funded through the Australian Government's Backing
Australia's Ability initiative, in part through the Australian Research Council.

30 J. Almquist, I. Gorton, and J. Haack

References

[1] Babcock, Brian; Babu, Shivnath; Datar, Mayur; Motwani, Rajeev; Widom, Jennifer.
Models and Issues in Data Stream Systems, Proceedings of 21st ACM Symposium on
Principles of Database Systems (PODS 2002)

[2] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query Processing, Resource Management, and
Approximation in a Data Stream Management System, In Proc. of the 2003 Conference
on Innovative Data Systems Research (CIDR), January 2003

[3] Bill Segall and David Arnold, “Elvin has left the building: A publish/subscribe
notification service with quenching,” Proceedings AUUG Technical Conference
(AUUG’97), pp. 243-255 (September 1997).

[4] M.K.Aguilera,R.E.Strom,D.C.Sturman,M.Astley,andT.D.Chandra. Matching events in a
content-based subscription system. In Eighteenth ACM Symposium on Principles of
Distributed Computing (PODC '99), pages 53--61, Atlanta, Georgia, May 4--6 1999.

[5] Marcel Ruff, White Paper xmlBlaster: Message Oriented Middleware (MOM),
http://www.xmlblaster.org/xmlBlaster/doc/whitepaper/whitepaper.html 2000.

[6] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf ,"Design and Evaluation of a Wide-Area
Event Notification Service". ACM Transactions on Computer Systems, 19(3):332-383,
Aug 2001.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf , "Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service". 19th ACM Symposium on
Principles of Distributed Computing (PODC 2000), Portland OR. July, 2000.

[8] P. Tran, P. Greenfield, I. Gorton, Behavior and Performance of Message-Oriented
Middleware Systems, Proceedings, 22nd Int´l Conf on Dist. Computing Systems
Workshops, Vienna 2-5 Jul 2002. Pages 645-650, IEEE

[9] I.Gorton, Justin Almquist, Nick Cramer, Jereme Haack, Mark Hoza, An Efficient,
Scalable Content-Based Messaging System, in Procs The 7th IEEE International
Enterprise Distributed Object Computing Conference, (EDOC 2003), pages 278-285,
Brisbane Sept 2003

[10] Francoise Fabret, H.-Arrno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth Ross,
Dennis Shasha, Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe Systems. ACM SIGMOD 2001 Conference, Santa Barbara, pages 115-
126, CA. May, 2001.

A Common Conceptual Basis for Analyzing
Transaction Service Configurations

Sten Loecher

Department of Computer Science, Dresden University of Technology
Sten.Loecher@inf.tu-dresden.de

Abstract. Transaction management services play an important role in modern
component technologies, such as Enterprise JavaBeans. They are provided as
middleware service by the container, which requires configuration information to
apply them properly to the application. In our work, we follow a model-driven
transaction service configuration approach to allow transaction design early in the
software engineering process. An important element of our approach is a common
conceptual basis for describing, analyzing, and comparing transaction service con-
figurations. It also supports the notion of contract with regard to transactional logic,
which is a prerequisite for the reliable composition of components to component-
based applications. In this paper, we present our approach to model-driven service
configuration and introduce a common set of concepts for describing transaction
service configurations.

1 Introduction

Modern component technologies, such as Enterprise JavaBeans (EJB)[5], that are used
to build server-side business applications combine two fundamental software engineer-
ing paradigms. On the one hand, component-based engineering[19] is used to structure
and manage application-specific logic. On the other hand, application-independent mid-
dleware services are added to the applications by a conceptually rather aspect-oriented
engineering approach.Such middleware services are provided by the container, which
is the runtime environment of component-based applications and requires configuration
information to apply the services properly. The focus of our work is on transaction man-
agement services, which are used to provide fault tolerance to applications and which
enable the isolated execution of concurrent processes that share resources.

An important point about middleware services is standardization, which is required
to allow interoperability between technically heterogeneous applications. Current trans-
action processing standards, such as the Object Transaction Service[14], usually define
a number of interfaces with respect to a reference architecture that must be implemented
or invoked by the involved components to provide respectively access the service. How-
ever, as the level of abstraction in software engineering raises to enable interoperability
not just among applications but also among engineering tools and to promote the reuse of
design artifacts, models become first-class entities in the engineering process. This de-
velopment towards model-driven development is currently boosted by the Model-Driven
Architecture (MDA)[8, 12] initiative, which tries to establish model-driven development

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 31–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 S. Loecher

based on modeling-standards defined by the Object Management Group (OMG), e.g.,
the Unified Modeling Language (UML)[15].

In our work, we follow a model-driven approach to transaction service configuration
[10, 9]. Our objective is to develop a conceptual framework that allows the management
and integration of various schemas for declarative configuration of transaction services,
i.e., we focus on container-managed transactions exclusively.We want to support existing
schemas, such as the EJB single attribute schema[5] or the NT&CT attribute schema[16],
but also new schemas that we have designed. The purpose of the framework is to allow
the transaction designer to choose from different configuration schemas, to compare
configurations of different types, and to analyze different types of configurations based
on a common set of tools.An important part of the framework is therefore a set of common
modeling concepts for describing transaction service configurations. This common set
of modeling concepts will be presented in this paper by means of a metamodel.

The contribution of our work is twofold. On the one hand, we contribute to the
development of model-driven software engineering with respect to the domain of trans-
action design. We propose a set of modeling concepts for describing transaction service
configurations, which is common in a sense of being independent of specific transac-
tion models and transaction processing technologies. This allows platform-independent
transaction design an reuse of configurations across different technologies. The defini-
tion of the modeling concepts and their semantics is based on standards defined by the
Object Management Group (OMG) and therefore integrates with the MDA. On the other
hand, the proposed modeling concepts support the notion of contract[1], which is an im-
portant prerequisite for the reliable composition of component-based applications from
components. A component contract must contain essential information for reasoning
about the behavior of component compositions. We think that the proposed modeling
concepts are well suited for this purpose. An important point about our work is that it
does not reinvent transaction processing theory but bridges the gap between transaction
processing theory and software engineering practice by transferring existing knowledge
to a new problem domain.

In Sect. 2, the approach to model-driven transaction service configuration is intro-
duced and a tool that supports the approach is presented. After a discussion of some
preliminary issues, we propose in Sect. 3 a set of common concepts to model transaction
service configurations. Finally, Sect. 4 discusses related work and Section 5 concludes
by summarizing the paper and provides information about current and future work.

2 Model-Driven Transaction Service Configuration

To apply transaction services properly to the application, the container requires infor-
mation. A transaction service configuration must describe the required transaction de-
marcation, dependencies between transactions, and the behavior in case of failures. The
transaction designer can provide this information by associating pre-defined configu-
ration attributes to the provided operations of components. This declarative configura-
tion approach allows simple and efficient specification of transaction services required
by applications and supports clear separation of concerns with respect to application-

A Common Conceptual Basis for Analyzing Transaction Service Configurations 33

Fig. 1. Example application

specific and application-independent logic[11]. It therefore provides the foundation for
our model-driven configuration approach.

Figure 1 shows a simple example to illustrate the declarative configuration ap-
proach. It comprises three components that implement funds transfer between two
accounts. For this, component FundsTransfer provides an operation transfer
via interface ITransfer. This operation is responsible for calling the debit and
credit operations provided by interface IAccount of component Account. After
successful funds transfer, the transfer operation calls operation printReceipt,
which is implemented by component ReceiptService and provided by interface
IReceiptService, to issue a receipt via a printing device. A configuration using the
pre-defined attributes of EJB, for example, would be specified as follows:

<container-transaction>
<method>

<ejb-name>FundsTransfer</ejb-name>
<method-name>transfer</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

The example shows part of a deployment descriptor, which is an XML file and holds
the configuration information that is read and interpreted by the container at runtime.
The transfer operation of component FundsTransfer must be invoked within a
new transaction, which has been declared using the pre-defined configuration attribute
RequiresNew. The debit and credit operations of interface IAccount must
be accordingly configured, e.g., using the configuration attribute Mandatory, which
declares that the operations must be invoked from within a transaction. Finally, operation
printReceiptmay be configured using attributeNotSupported to declare that the
ReceiptService component does not support transactions, because printed receipts
cannot be backed out by the system.

The association of configuration attributes to operations, as illustrated in the example,
is in fact transaction design. To allow this design to be performed early in the software
engineering process, we follow a model-driven configuration approach. This allows
analysis of configurations and adaptation of transaction designs to required functional
as well as non-functional properties, such as absence of deadlocks and high concurrency.
The model-driven configuration approach comprises the following three major steps:

34 S. Loecher

1. Assembling an application respectively business logic model from a set of selected
component specifications by the application designer. The component specifications
provide information about provided and required interfaces as well as specifications
relating these interfaces to each other. For the purpose of our work, we do not
require a complete formal specification of the behavior of components but only
information that is necessary for analyzing transactional logic in subsequent steps,
e.g., the messages sent by components as well as their temporal ordering.

2. Configuration of the application model by the transaction designer using configu-
ration models, which capture the properties of configuration schemas and are asso-
ciated to elements of the application logic. The configuration model supported by
EJB, for example, simply comprises six configuration attributes.

3. The mapping of the application as well as configuration models to specific platforms
by tools. In other words, the assembling of the application and the configuration of
the application must be performed according to the models.

As indicated in the first two steps of the model-driven development procedure, dif-
ferent types of models are required for the approach. For describing the business logic,
an application model is used. The description of transaction services required by the
application is based on configuration models. An important point about configuration
models is their multiplicity. Our work is based on the assumption that multiple types
of configuration models are required. This is due to the various transaction models that
must be supported and the preferences of the different developers that participate in the
transactions design process. A detailed discussion about that subject can be found in [9].

For analyzing and comparing transaction configurations, we have introduced a third
type of model: the integrated model. Figure 2 illustrates the complete picture of the
modeling framework. The application and the configuration model are merged and trans-
formed to the integrated model, which is depicted by the hollow arrow pointing to the
right. The integrated model comprises business as well as transaction logic. The transac-
tion logic is based on a small set of common concepts that integrate seamlessly with the
modeling concepts for the business logic and are independent of particular transaction
models and transaction processing technologies. The arrows pointing to the business as
well as configuration model represent the transformation of an integrated model back
into the respective models to update for example the configuration model after mod-
ifications of the integrated model. Having an integrated model results in a number of
advantages for the modeling approach:

– The integrated model serves as basis for defining the meaning of configurations.
Defining the meaning, i.e., semantics, for each individual configuration model type
is expensive. Instead, a number of rather simple transformation rules from configura-
tion models to the integrated model defines the meaning of configurations implicitly.

– The integrated model provides a uniform foundation for analyzing configurations.
New configuration models can be easily integrated into the framework by defining
a number of transformation rules.

– The integrated model provides the foundation for the comparison of different config-
urations and different configuration types based on a common set of modeling con-
cepts. For example, to compare two configurations of different type, the respective

A Common Conceptual Basis for Analyzing Transaction Service Configurations 35

Fig. 2. Types of models in the approach

integrated models must be compared with respect to similarity of model elements.
In case of dissimilarities further investigations and reasoning may be required.

An important point about our work is that we use metamodeling for designing the
introduced types of models. On the one hand, this is required to closely relate our work
to the MDA. On the other hand, the use of metamodeling enables the rapid development
of tool support. We have already developed a prototype to investigate the applicability
of our approach. Figure 3 sketches the architecture of the prototype.

The main component of the prototype is a meta data repository, which is respon-
sible for managing metamodels and models. It is based on the Meta Data Repository
(MDR) distributed with the NetBeans development environment project1. Different sets
of interfaces, which are depicted by double circles in Fig. 3, enable to access busi-
ness models (IBusinessLogic), configuration models (IConfiguration), and
integrated models (IIntegratedModel).

A parser is used to create business as well as configuration models within the repos-
itory. We currently use a proprietary XML-based input format for the parser since it
enables efficient prototyping. However, other kinds of user interfaces are conceivable,
e.g., the coupling of the prototype to graphical user interfaces.

Transformations between the different types of models are specified by a notation
similar to that proposed in [8] and implemented directly in Java. The transformations
access the models via reflective interfaces (IReflective). It was originally planned
to use a QVT2 engine for this purpose. However, available prototypes are not yet mature
enough to be used in our work.

One goal is to couple several analysis tools that use the integrated model as common
basis. Such analysis tools may perform static as well as dynamic analysis. Currently,
the prototype comprises a code generator that produces Promela scripts, which are the
input for the SPIN3 software model checker. That way, we can simulate as well as model
check configurations, analyze their properties, and use this information to improve the
transaction design.

1 http://www.netbeans.org
2 Queries, Views, and Transformations. A standard yet to be defined by the OMG.
3 http://spinroot.com

36 S. Loecher

Fig. 3. Prototype architecture

3 Integrated Model Concepts

This section explains the conceptual foundation for integrated models, i.e., a metamodel
is presented and its interpretation is defined. The proposed metamodel is based on two ex-
isting works. On the one hand, we use the results of the study in [7] for the business logic
specific part of the metamodel. It defines a core language for describing static as well as
dynamic properties of an application that we have extended with concepts to describe
component-based applications. On the other hand, we use ACTA[3, 2] as starting point
for integrating transaction logic specific modeling concepts to the metamodel. ACTA is
a formal framework for describing transaction models and reasoning about them. We
have decided to use ACTA as starting point for designing the transaction specific part,
because it identifies concepts to describe transaction properties independently from spe-
cific transaction models and implementation technology, which aligns with our goal of
platform independent modeling in the early phases of the software engineering process.

We do not elaborate on the business logic specific part of the metamodel in this
paper, because it is discussed in detail in [7]. Instead we focus on the concepts for
describing transaction logic. Section 3.1 provides more details on the ACTA framework
and introduces the approach to metamodeling that we use in our work. The transaction
logic specific part of the metamodel is presented in Sect. 3.2. Section 3.3 finally defines
the interpretation of the metamodel more precisely.

3.1 Preliminaries

ACTA. ACTA[3, 2] is a formal framework based on first-order logic for describing
transaction models and reasoning about them. It is based on a small set of fundamental
concepts such as events that are classified into significant and object events, a history of
events, the specification of effects of transactions on other transactions, and the specifi-
cation of effects of transactions on objects:

Events: A basic building block of ACTA are events, which are classified into significant
and object events. Significant events are invocations of transaction management primi-
tives that are used to initiate or terminate transactions, e.g., Begin, Commit, and Abort.
Object events are invocations of operations on objects. Objects are abstract entities that

A Common Conceptual Basis for Analyzing Transaction Service Configurations 37

represent shared entities in a database. Each object has a type which determines the
operations that can be invoked on the object.

History: A history of events represents the concurrent execution of a set of transactions.
It contains all events that are associated with transactions and indicates a partial order
in which these events occur. Constraints over the history are used to specify the effects
between transactions and the effects of transactions on objects.

Effects on Transactions: The effects of transactions on other transactions are captured
by dependencies, which are constraints over the temporal ordering of the significant
events of two transactions. For example, the nested transaction model[13] uses two
kinds of transactions, namely root and subtransactions. Two types of dependencies are
required to describe the dependencies between those two kinds of transactions, namely
commit dependencies and weak-abort dependencies, which have been specified for two
transactions ti and tj in [2] as follows:

– A Commit Dependency (tj CD ti) specifies, that if both transactions commit, then
the commitment of ti precedes the commitment of tj .

– A Weak-Abort Dependency (tj WD ti) specifies, that if tj commits and ti aborts
then the commitment of tj precedes the abortion of ti in the history.

We will use the two presented dependencies in the rest of the paper for illustration.
Other types of dependencies exist within other transaction models and have been defined
for example in [2].

Effects on Objects: The effects of transactions on objects are specified by two sets,
namely the view and the conflict set of a transaction. The view of a transaction basically
specifies the state of objects that is visible to a transaction at a point in time. The
conflict set specifies the operations for which conflicts have to be determined during
execution of a transaction. These two sets model the isolation property of transactions
independently from specific synchronization mechanisms. The view and conflict set are
usually expressed as predicates over the history, the current set of dependencies between
transactions and the transactions itself.

Besides the discussed concepts, an important artifact of the ACTA framework is
the concept of delegation. In ACTA, each operation is assigned a commit and abort
operation, which must be called by the responsible transaction to make the operation
results visible to other transactions in the system. Basically, a transaction is responsible
for committing or aborting an operation if the operation was invoked within the scope of
the transaction. Delegation allows to pass those responsibilities between transactions and
therefore enables the description of different kinds of transaction termination semantics.
In the nested transaction model, for example, the commit of a subtransaction results in
delegation of subtransaction responsibilities to the parent of the subtransaction whereas
the commit of a root transaction requires the root transaction to commit or abort all
operations it is responsible for.

Modeling Approach. We use the MMF approach[4] to define metamodels and their
semantics, which aims at providing a facility that allows the definition of modeling

38 S. Loecher

languages and their semantics in a way that is accessible to tool builders and those who
use the UML[15] as modeling language. For this, all models are based on UML notation.
To define a language and its semantics, the MMF approach requires to:

1. Define an abstract and concrete syntax of the language by UML models. Whereas
the abstract syntax is a computer-centric representation of the language concepts,
the concrete syntax is a human-centric representation model.

2. Define a semantic domain, i.e., the things that are denoted by the abstract syntax.
The semantic domain itself is also a UML model.

3. Define a display mapping to relate concrete and abstract syntax as well as a semantic
mapping to give the modeling language, i.e., the abstract syntax, a meaning.

The approach is denotational with respect to traditional language engineering. However,
the use of commonly comprehensible notations for defining the syntax, domain, and map-
pings makes it attractive for practically oriented software engineers and tool developers.

We define in Section 3.2 the abstract syntax of the language that describes the trans-
actional logic of the integrated model. We do not define a concrete syntax in this paper,
because we want to focus on the concepts rather than the notation. Besides that, the
integrated model is a computer-centric model primarily used by analysis tools, which
anyway do not require a human-centric representation of the model. Section 3.3 then
defines the semantic domain and discusses the semantic mapping from the concepts
presented in Sect. 3.2.

Working Example. Figure 4 shows a UML instance diagram4. It is an example for
an integrated model and will be used in the following sections. We assume that the
FundsTransfer component from the example in Sect. 2 is deployed to a container
that provides nested transactions, which is different from the example in Sect. 2 but more
suitable for explaining the modeling concepts in the next section. The model reflects the
fact that the transfer operation will be invoked within a root transaction, which is
denoted by the modeled dependencies and will be explained in the next section. The
instances of Operation, CompoundAction, and FeatureRef are part of the
business logic. An Operation is a dynamic feature of an object. Coherent actions
are modeled by compound actions, i.e., the call to three operations in the example. A
FeatureRef references a feature of an object, such as an operation. The reader should
be aware that the example is simplified, i.e., parameters and details of the business logic
have been omitted for reasons of clarity.

3.2 Model Concepts

Figure 5 shows the metamodel of the transaction logic specific part of integrated mod-
els. The metamodel primarily comprises two categories of metaclasses for describing
transactional logic:

4 Boxes represent instances of model classes. Instances my have a name, which is written un-
derlined within the box and separated by a colon from the type of the instance. Lines depict
links, which are instances of associations between model classes. Link ends correspond to as-
sociation ends and are accordingly named. For reasons of clarity provider, dependant,
and receiver are abbreviated by prov, dep, and rec within the figure.

A Common Conceptual Basis for Analyzing Transaction Service Configurations 39

Fig. 4. Example instance of an integrated model

1. Metaclasses that result from mapping ACTA concepts to the context of our work,
i.e., by integrating them into the metamodel provided in [7]. These metaclasses are
AtomicActionExp, DependencyExp, and DelegationExp.

2. Metaclasses that have been added to support component-based engineering more
adequately and to allow conditional control over transaction propagation. These
metaclasses are AtomicFeatRef and CallerTestExp.

These metaclasses are based on the conceptsActionExpression andFeatureRef
defined in [7]. An action expression defines the fundamental construct that models the
evaluation of the state of an object or the change of its state over time. A FeatureRef
is a special action expression that models the reference or call to a feature of an object.

An important point is, that the mapping of ACTA concepts was not straightforward.
Since we wanted to design a minimal set of modeling concepts that results in compact in-
tegrated models, we decided to include only those modeling concepts into the metamodel
that are required to declare transaction demarcation, internal transaction structure, and
effects of transactions on other transactions. The specification of effects of transactions
on objects directly in the integrated model would have added to much complexity. These
effects are therefore expressed by means of profiles applied to the semantic domain of
the modeling concepts, which will be explained in the next section. In the following, the
metaclasses are explained in more detail:

AtomicActionExp: Atomic action expressions declare actions that are performed atom-
ically and isolated from other actions, i.e., they declare demarcation borders of trans-
actions. An important point about the resulting transaction, which we denote atomic
action in our work, is that it is bound to an individual component. The propagation

40 S. Loecher

of atomic actions across different component instances must be explicitly declared us-
ing AtomicFeatRef. The business logic that is executed within an atomic action is
defined by association end subAction. In the example, this is the compound action
that defines the call to debit, credit, and printReceipt. If an atomic action
establishes dependencies to the atomic action of the invoking operation and requires the
delegation of responsibilities to it, this is modeled by the association endsdep2Caller
and del2Caller. In the example no such dependencies and delegations are defined,
since the atomic action expression models a root transaction of the nested transaction
model, which only declares dependencies to subtransactions.

AtomicFeatRef: Atomic feature references are abstract interfaces to the atomic ac-
tions of called operations respectively referenced features. They explicitly declare the
requirement that the referenced feature must be executed within an atomic action. They
are abstract in a sense of hiding the details of the atomic action within the referenced
feature, such as the dependencies established by this atomic action. In the example,
the transfer operation requires the debit and credit operations to be executed
within atomic actions.

DependencyExp: Dependency expressions define dependencies between atomic ac-
tions. DependencyExp denotes the general concept of dependency. Actual depen-
dencies between atomic actions are modeled by specializations of this class, such as
CommitDepExp and WeakAbortDepExp, which model commit dependencies and
weak-abort dependencies, respectively.Theassociation endsprovider anddependant
are used to specify the respective action expressions between which the dependency is
declared. Dependency expressions can be used in two ways. On the one hand, they are
used to express dependencies between two atomic action expressions that belong to the
same component. On the other hand, they are used to express dependencies to atomic
actions of either calling operations or referenced features. If dependencies are not ex-
pressed between two atomic action expressions, either the dependant or the provider
is undefined or refers to an atomic feature reference5. In the example model, four de-
pendencies have been declared, which model the fact that the AtomicActionExp
specifies a root transaction in the nested transaction model and debit and credit are
executed within atomic actions that are required to behave like subtransactions. In the
nested transaction model, a root transaction is commit dependent to its subtransactions
and subtransactions are weak-abort dependant to their parent transaction. For model-
ing these facts, the respective dependencies have been added to the model between the
atomic action expression and the atomic feature references.

DelegationExp: Delegation expressions are used to declare the delegation of responsi-
bilities to commit or abort individual action executions. The association endsprovider
and receiver specify the provider and receiver of the responsibilities, respectively.
In the example, two delegation expressions have been defined between the feature ref-
erences to debit and credit and the atomic action expression to model the fact that

5 In UML models, such facts are usually defined by well-formedness rules using the Object
Constraint Language (OCL). We omit these rules in the paper for reasons of brevity.

A Common Conceptual Basis for Analyzing Transaction Service Configurations 41

Fig. 5. Metamodel for transaction logic of integrated models

upon commit of the atomic actions of the feature references, the responsibilities are
delegated to the atomic action of transfer.

CallerTestExp: Caller test expressions are required to determine the properties of an
operation call with respect to transactional logic. A caller test expression has a mode
which determines the further processing of either the subaction or the exception.
If the evaluation of the CallerTestExp is positive, the
subAction is executed, otherwise the exception will be performed. In the exam-
ple, a caller test expression is used to determine if the transfer operation has been
called from an operation running an atomic action. The mode false specifies that the
subaction will be executed only if this is not the case. An exception has not been
declared for the example, i.e, the exceptional behavior has been left unspecified.

The introduced metamodel provides a small set of concepts that is sufficient to
describe transaction configurations. The concepts are platform-independent in a sense
of abstraction from concrete transaction models, concurrency control mechanisms, and
technology-specific mechanisms, such as propagation policies. In our work, we have
already elaborated rules for mapping configuration models of current technologies, such
as EJB[5], to the integrated model but also of research prototypes, such as the one
presented in [16].

3.3 Interpretation of Model Concepts

This section defines the correct interpretation of the presented modeling concepts. We
first provide an overview about the semantic mapping and subsequently explain the

42 S. Loecher

Fig. 6. View one on the semantic domain

concepts of the semantic domain individually. Since an exhaustive presentation would
go beyond the scope of this paper, we will focus on primary issues and simplify the
description accordingly.

The following table summarizes the mapping of modeling concepts to elements of
the semantic domain:

model concept domain concept
ActionExpression ActionExpExec
AtomicActionExp AtomicActionExec
DependencyExp DepExpExec
DelegationExp DelExpExec
CallerTestExp CallerTestExpExec
AtomicFeatRef AtomicFeatRefExec

The left column of the table denotes the modeling concepts, whereas the right column
specifies the respective instance. For example, it defines that ActionExpExec is an
instance of ActionExpression. Since all model concepts are specializations of
ActionExpression, we use the ending Exec to denote the execution of such an
expression in the domain model.

For reasons of clarity, we have split the illustration of the domain model on two
figures. Figure 6 and 7 show different views respectively details of the domain model.
The individual domain concepts are explained in the following.

ActionExpExec: A concept that is central to the semantic domain isActionExpExec,
which models an executable unit that evaluates or changes the state of an object (see

A Common Conceptual Basis for Analyzing Transaction Service Configurations 43

Fig. 7. View two on the semantic domain

Fig. 6). It is executed by a component instance (ComponentInst), which is modeled
by the association end selfInst. An important concept of the semantic domain are
local event histories. Each component instance is associated to a local event history
(locEvHist), which contains the events performed by a component instance. Local
event histories are a result from mapping event histories from ACTA into our semantic
domain. An event is presented by an ActionExpExec in our work, which seamlessly
integrates with the concept of local states of [7], i.e., the event of executing an action
expression results in a new state of a component instance.

AtomicActionExec: A specialization of ActionExpExec isAtomicActionExec,
which models a unit that is executed atomically and isolated from other atomic actions.
To be more precise, the unit that is executed isolated and atomically is defined by all
actions that are contained within the subtree defined by association end subActExec
and executed by the selfInst of the atomic action, which is depicted in Fig. 6. An
AtomicActionExec in fact corresponds to a transaction in the ACTA framework.

Each AtomicActionExec is associated to a view and conflictSet. As
introduced in Sect. 3.1, these two sets model the synchronization behavior. In Sect.
3.2, it has been stipulated that the synchronization behavior is not directly modeled
in the integrated model. Instead, profiles attached to the semantic domain are used to
specify this aspect. A profile basically comprises a number of invariants that specify

44 S. Loecher

the properties of view and conflictSet more precisely and is bound to individual
components, i.e., profiles are part of component descriptions. This in fact restricts a
component instance to support only one type of transaction model at a time. We think
that this restriction is appropriate, since a components instance is the unit of management
for the container. The following OCL constraint gives an example for the specification
of view and conflictSet for traditional atomic transactions:

context AtomicActionExec
inv: view = self.selfInst.locEvHist
inv: conflictSet = ActionExpExec.allInstances->select(aae|

not (aae.isSubAction(self))
and (aae.inProgress() = true))

The invariants specify that an atomic action can see the current state of the component
instance that executes it, but conflicts have to be determined for all action executions that
are not performed within the scope of the atomic action. The operations isSubAction
and inProgress determine if an action execution is contained within the subtree
associated by subActExec of the atomic action and if an action execution is currently
in progress, respectively.

DepExpExec: An atomic action also results in significant events that model the ini-
tiation an termination of atomic actions, modeled by CtrlPrimitiveExec (see
Fig. 7). They allow, for example, to express dependencies between atomic actions by
DepExpExec respectively specializations of it. The precise meaning of particular de-
pendencies is expressed by OCL constraints, for example:

context CommitDepExec
inv: let i = self.dependant.termEvent,

j = self.provider.termEvent in
(j.oclIsTypeOf(CommitExec))

implies
(i.oclIsKindOf(CommitExec) implies j.pred->includes(i))

The invariant specifies that in the case both atomic actions commit, the commit of the
provider must precede the commit of the dependant.

DelExpExec: A DelExpExec results in delegation of responsibilities to commit indi-
vidual actions of one atomic action (provider) to another (receiver). The ac-
tions an atomic action is responsible for are contained within the accessSet of
AtomicActionExec. That means, the execution of a delegation expression results
in the assignment of the accessSet of the provider to the accessSet of the
receiver.

CallerTestExpExec: A CallerTestExpExec evaluates whether an atomic action
has been invoked from within the scope of another atomic action and results in a subac-
tion execution (subExec) or in throwing an exception (excExec). The evaluation of
the invocation property is performed by evaluating the existence of a callerProxy,
depicted in Fig. 7.

A Common Conceptual Basis for Analyzing Transaction Service Configurations 45

AtomicFeatExec: The communication between two linked components with respect
to transactional logic is modeled by AtomicFeatExec, which is the execution of an
AtomicFeatRef. AtomicFeatExec establishes a link (invAct) between the ref-
erencing (selfInst) and the referenced (execInst) component instance (see Fig. 7).
The link is used to synchronize two proxy actions (callerProxy andcalledProxy)
with its original actions in the linked component instance. Proxy actions mirror the be-
havior of the original actions by inserting corresponding events in the local event history
of component. That way, we abstract from technology specific communication concepts,
such as polling and callbacks, and provide a more general description of the behavior.

4 Related Work

As already discussed extensively, our work is closely related to the study in [7] and
ACTA[2, 3]. We use the study in [7] as basis for our work and have transferred concepts
from ACTA to it. Our work is also closely related to the MDA approach[8, 12] in general
and initiatives for model-driven domain engineering in particular, such as the COSMIC
project[6]. However, whereas [6] focuses on the general model-driven configuration
approach, our focuses in particular on details of transaction service configuration. There
exist also numerous approaches to formal modeling of transaction configurations to
enable analysis of configurations. One example is the formal definition of the EJB
transaction attributes in [18]. Whereas such formalizations solve the problem for specific
platforms, we aim at providing a common platform-independent modeling basis. In [17]
an extensible framework for transaction service configurations is proposed. This is also
a goal of our work. However, the approach chosen in [17] does not support model-driven
service configuration.

5 Summary and Outlook

In this paper, we have presented a model-driven transaction service configuration ap-
proach. An important part of the approach is an integrated model that describes business
as well as transaction logic and provides a common, i.e., platform-independent, founda-
tion for analysis of transaction configurations. We have presented a metamodel for the
transaction logic specific part and defined its interpretation based on the MMF approach
to language engineering.

The presented work contributes to the discussion about model-driven development,
especially in the context of MDA and within the domain of transaction modeling. To
provide a common basis for describing and analyzing transaction configurations, we
have transferred existing concepts from transaction processing theory to the software
engineering domain. Furthermore, we think that integrated models express exactly those
information with regard to transaction logic that is required to describe contracts between
components.

We have already developed a prototype that supports our model-driven configuration
approach. A code generator that produces Promela, which is the input format for the
SPIN model checker, allows us to simulate as well as model check properties of trans-

46 S. Loecher

action configurations. Currently we work on extending the prototype to accept different
configuration models and we look at coupling other analysis tools to it.

References

1. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components contract
aware. Computer, 32(7):38–45, July 1999.

2. P. K. Chrysanthis and K. Ramamritham. ACTA: The SAGA Continues, chapter 10, pages
349–397. Morgan Kaufmann Publishers, 1992.

3. P. K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models using
ACTA. ACM Trans. Database Syst., 19(3):450–491, 1994.

4. T. Clark, A. Evans, S. Kent, and P. Sammut. The MMF Approach to Engineering Object-
Oriented Design Languages. In Proceedings of the Workshop on Language Descriptions,
Tools and Applications, LDTA2001. April 2001.

5. L. G. DeMichiel, L. Ümit Yalcinalp, and S. Krishnan, editors. Enterprise JavaBeans Specifi-
cation, Version 2.0. Sun Microsystems, 2001.

6. A. Gokhale, D. Schmidt, B. Natarajan, J. Gray, and N. Wang. Model-Driven Middleware. In
Middleware for Communications, chapter 7. John Wiley and Sons, 2004.

7. A. Kleppe and J. Warmer. Unification of Static and Dynamic Semantics of UML: A Study
in redefining the Semantics of the UML using the pUML OO Meta Modelling Approach.
http://www.klasse.nl/english/uml/uml-semantics.html, 2003.

8. A. Kleppe, J. Warmer, and W. Bast. MDA explained: the practice and promise of the Model
Driven Architecture. Addison-Wesley Professional, 2003.

9. S. Loecher. Model-Based Transaction Service Configuration for Component-Based Devel-
opment. In 7th Workshop on Component-Based Software Engineering (CBSE7), Edinburgh,
Scottland, Workshop Proceedings, Volume 3054 of LNCS. Springer., March 2004.

10. S. Loecher. Modellbasierte Konfiguration von Transaktionsdiensten. In Modellierung 2004,
Gemeinsame Konferenz von zwoelf Fachgruppen der GI, Marburg, Germany, Proceedings
zur Tagung, LNI Volume P-45. Gesellschaft für Informatik, March 2004.

11. S. Loecher and H. Hussmann. Metamodelling of Transaction Configurations - Position Paper.
In Metamodelling for MDA, First International Workshop, York, UK. University of York,
November 2003.

12. J. Miller and J. Mukerji, editors. MDA Guide Version 1.0. www.omg.org, May 2003.
13. J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD

thesis, Massachusetts Institute of Technology, 1981.
14. Object Management Group (OMG). Transaction service specification, version 1.2, May 2001.
15. Object Management Group (OMG). Unified Modeling Language Specification, version 1.5.

Document number formal/03-03-01, Object Management Group, March 2003.
16. M. Prochazka. Advanced Transactions in Component-Based Software Architectures. PhD

thesis, Charles University, Faculty of Mathematics and Physics, Department of Software
Engineering, Prague, 2002.

17. R. Rouvoy and P. Merle. Abstraction of Transaction Demarcation in Component-Oriented
Platforms. In International Symposium on Distributed Objects and Applications (DOA’03),
Rio de Janeiro, Brasil, 16-20 June 2003, 2003.

18. J. P. Sousa and D. Garlan. Formal Modeling of the Enterprise JavaBeans Component Integra-
tion Framework. In Proceedings of FM’99, volume 1709 of LNCS, Toulouse, France, Sept.
1999. Springer Verlag.

19. C. A. Szyperski. Component Software. Addison Wesley, 1998.

Alice: Modularization of Middleware Using
Aspect-Oriented Programming

Michael Eichberg and Mira Mezini

Department of Computer Science,
Software Technology Group,

Darmstadt University of Technology, Germany
{eichberg, mezini}@informatik.tu-darmstadt.de

Abstract. In this paper, we identify three problems with current com-
ponent middleware. First, the implementation of services is usually not
modularized, making it hard to adapt the platform to application spe-
cific needs, to exchange services to cope with changing requirements or
to use it on different devices. Second, mapping components to objects
results in a complex programming model and is making the component
code dependent on the used component framework. Third, application
level crosscutting concerns are not modularized.

To solve these problems, we propose an aspect-oriented program-
ming approach, complemented by standard Java 1.5 annotations to pro-
vide meta information about the components, and a sophisticated query
language for pointcut designation based on annotations.

1 Introduction

Current middleware for component-based software development (CBSD), based
on the Enterprise JavaBeans (EJB) [1] or CORBA Component Model [2], pro-
vide good separation of concerns between the business logic (implemented by
the components) and the technical infrastructure needed to run the business
logic (implemented by the container). The container implements middleware
services e.g., to authenticate users, to make an application remotely accessible,
to provide transaction handling, etc., and transparently invokes those services
at well-defined points during the execution of the business logic.

Without the dedicated support by the component middleware the imple-
mentation, respectively the invocation and orchestration of middleware services,
would be scattered around and tangled with the business logic. Such services, re-
spectively their invocation, would be crosscutting the business logic [3]. Compo-
nent middleware modularize this crosscutting. However, we observe three prob-
lems with this modularization.

The first problem concerns the complexity of the programming model. To
achieve the separation of the business logic from the middleware services, current
approaches force the developer to map component concepts onto language con-
structs designed to express lower-level concepts such as objects (i.e. Java classes

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 47–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 M. Eichberg and M. Mezini

and interfaces in EJBs), often involving coding conventions. This complicates
the programming model and defeats the benefits of static type checking [4,5]. A
more direct support for the concept of distributed components in the program-
ming model in use would make the business logic more maintainable and would
foster reusability.

Second, middleware services are themselves generally not well modularized
from each other. A modularization of the services into well encapsulated and
decoupled modules is important to support adaptable component environments
that can be tailored to specific application’s needs [4, 5]. The ongoing discus-
sion about the “correct” persistence service [6,7] supports the observation that
adaptable containers / application servers are needed. The vision is a virtual
container composed out of a set of services per application.

Finally, current environments modularize only a predefined set of services
defined by the respective component models; they lack openness along with a
uniform approach for modularizing arbitrary application level aspects such as
e.g., application specific authorization policies or aspects of the business logic
itself. It is desirable to have a uniform mechanism for modularizing middleware
as well as application specific concerns.

Motivated by these observations, we propose a new approach to the design of
component middleware frameworks, called Alice. Our approach combines a mini-
mal container concept with aspect-oriented programming [8] and annotations [9].
In Alice, business logic is declared and implemented in plain Java interfaces and
classes, while crosscutting services are implemented in aspects.

Alice uses standard Java 1.5 annotations [9] to decorate Java interfaces that
declare a component type. The idea is that components have additional seman-
tics, as compared to plain objects; e.g., session or entity semantics. In Alice,
such component properties are expressed by annotations rather than by coding
conventions; at deployment-time the properties are evaluated, i.e. it is ensured
that a component implementation confirms to the properties declared in its an-
notations.

The annotations are also used by the services, which are implemented in
aspects and select well-defined points in the execution of the component where
the service injects semantic effect. We will argue that annotations allow to select
relevant join points based on semantic properties.

In Alice, the container consists in a minimal core fulfilling two roles. It serves
as an assembler that, given a set of components and services deployed in it, makes
sure that components and services are instantiated and the dependencies between
them are resolved. In addition, the container serves as an extended class-loader
that injects the semantics declared by the annotations into the components and
weaves the functionality defined in aspects.

This paper presents the overall architecture of Alice and shows how it ad-
dress the problems of current middleware platforms. Furthermore, we discuss the
relation between Alice and other aspect-oriented proposals. We argue that the
combination of aspect-oriented and container concepts supplemented by annota-
tions makes Alice unique among the other aspect-oriented approaches to design

Alice: Modularization of Middleware Using Aspect-Oriented Programming 49

of middleware platforms for component-based software development. Further,
we explain that such a combination is actually needed.

The paper is structured accordingly. In Sec. 2 we present Alice. Sec. 3 dis-
cusses how Alice address the problems of component middleware platforms dis-
cussed above. In Sec. 4, we discuss Alice in relation to other aspect-oriented
approaches. Sec. 5 summarizes the paper and outlines areas of future work.

2 Alice

This section is structured in 4 subsections, one for each element in the overall
architecture of Alice. First, we discuss how annotations are used to declare a
component’s type and properties. Second, we present the implementation of ser-
vices. Next, the functionality to enable an interaction between a component and
a service is shown. At last, we explain the functionality of the Alice environment
that brings all pieces together.

2.1 The Component Model / Annotations

A central feature of Alice is the use of Java 1.5 annotations [9] to provide
meta-information about components and services. For components such meta-
information includes the type of the component as well as structural and be-
havioral properties of it. For instance, in the following listing the annotation
Session is used to declare that ShoppingCart defines a session component’s
interface1:

1 @Session public interface ShoppingCart {
2 @Authorize(role=”Customer”) public void checkout() { ... }
3 ...
4 }
5 public class ShoppingCartImpl implements ShoppingCart{ ... }

Note that the annotation is attached to the interface and not to the implementing
class(es). This is consistent with the general statement that the interface defines
a component’s contract and the type of the component is part of such a contract.

Not only components, but also their methods, can be decorated with annota-
tions. For instance, the annotation Authorize can be used to decorate business
methods for which authorization is required. In the example above, this anno-
tation is used to define that the checkout method can be executed, if and only
if the caller has the Customer role (the value "Customer" of the annotation
member role (in line 2), determines the required role of the user).

Note that annotations are not merely syntactic labels attached to the compo-
nent. They effect the semantics of the component in an important way. The an-
notation Session associated with the interface ShoppingCart determines prop-
erties of every component that implements this interface. The defined properties
depend on the chosen component model. However, Alice is not restricted to a

1 A stateful Session Bean in EJB [1] terminology.

50 M. Eichberg and M. Mezini

particular component model. The semantics of an annotation can be freely de-
fined, but have to remain stable as soon as the annotation is used for the first
time.

For an EJB-like component model, an example of a structural property to be
fulfilled by session bean classes is that all fields must be declared either private
or public static final. Examples of behavioral properties in the same model
are: “Sessions should never start threads and should not handle concurrent
access on their own”. To give a more concrete intuition of how annotations define
part of the component’s semantic in Alice, consider an excerpt of a possible
definition of the Session annotation for an EJB-like component model in the
following:

1 Annotation to define a type as being a session component, i.e. ...
2 ∗/ @Target({ElementType.TYPE}) @Documented // Java meta
3 annotations
4 @Validate({”Session.xirc”})
5 public @interface Session { /∗ empty ∗/ }

To read this code, one has to keep in mind that Java 1.5 annotations are
program elements that can themselves be annotated with other annotations,
called meta-annotations. The Target and Documented annotations used in the
definition of Session above (line 3) are standard Java meta-annotations: in the
concrete case, they specify that the Session annotation (a) can only be used
to decorate type declarations (Target), and (b) that its usage should be part of
the documentation of the decorated elements (Documented).

The Validate meta-annotation is used to bind structural/behavioral prop-
erties that the annotation imposes on the implementation of the components
decorated with it. In our example, checks for those properties are defined in the
file Session.xirc. That is, Session.xirc contains the logic for checking that
any class that implements an interface annotated as Session does not explicitly
use synchronization primitives, does not create threads, and that all its fields
are declared as private or final public. In Sec. 2.4 we will go into more details
as how this logic is expressed and executed in the Alice environment. For now,
it is sufficient to note that for every class annotated with Session, all checks
defined in Session.xirc will be evaluated and violations will be reported. Vari-
ations on this session semantics can be encoded in another annotation, call it
Session-Special. A well-defined related set of annotations defines the compo-
nent model in use in Alice; such models can co-exist.

2.2 Implementation of Services

Recall, that service denotes every implementation of crosscutting functionality.
In Alice a service is a Java class decorated with the Service annotation; it
implements crosscutting functionality by means of Pointcut & Advice [10]. We
use the terms pointcut, join point and advice as defined by AspectJ [11]. Join
points are well-defined points in the execution of a program; pointcuts are queries

Alice: Modularization of Middleware Using Aspect-Oriented Programming 51

for selecting sets of such points that participate in a crosscutting structure;
advice defines behavioral effect at the selected join points.

In Alice an advice is a standard Java method with a special signature and an
Advice annotation. The parameter of the method is a Context object encapsu-
lating the available context at a selected join point. The return type has to be
Object and represents the result of the advice evaluation; it is used instead of
the result of the original functionality at the selected join point.

For illustration, we discuss the development of a service for role-based au-
thorization. In a non-aspect-oriented implementation the code for role-based au-
thorization would be scattered around several modules. This is why role-based
authorization is used as a typical example of a crosscutting concern [12]. Sample
code implementing a role-based authorization in Alice is shown in the following
listing.

1 @Service public interface RoleBasedAuthorization { /* empty */ }
2

3 public class RoleBasedAuthorizationImpl implements RoleBasedAuthorization {
4

5 private Authentication authentication;
6 public RoleBasedAuthorizationImpl(Authentication authentication){
7 this .authentication = authentication;
8 }
9

10 @Advice (pointcut=”implementingMethods(
11 annotatedMembers(annotatedTypes(’alice.ex.annotation.Session’),
12 ’ alice .ex.annotation.Authorize’,
13 ’ role ’, ’Customer’))”)
14 public Object onExecution(Context context){ return authorize(context,”Customer”); }
15

16 private Object authorize(Context context, String role) {
17 User user = authentication.getUser(context.getThis());
18 if (validate user) return context.proceed();
19 else generate error;
20 }
21 }

Such a service will select all method calls to be checked for authorization by
their property of having the annotation Authorize and will check if the authen-
ticated user has the correct role. Hence, the authorization service is dependent
on an authentication service. To make this dependency explicit the constructor
of the class RoleBasedAuthorizationImpl in the above listing declares a pa-
rameter with formal type Authentication (line 6). At creation time, a service
implementing this interface will be injected by the environment. Here we use the
techniques of constructor-based dependency injection [13]. That is, the construc-
tor of a component defines the dependencies on the services that are required.
So, whenever a new component is instantiated an instance of a service is passed
to the component to resolve the dependency. If a dependency cannot be resolved
an exception is thrown and the component will not be loaded.

The most important part of the service is the definition of the pointcut (line
10) as part of the Advice annotation. The pointcut first selects all interfaces
annotated with the Session annotation (line 11). For each selected interface,
annotatedMembers will determine all methods decorated with the Authorize
annotation (line 12) and whose role element (line 13) is set to ‘‘Customer’’

52 M. Eichberg and M. Mezini

(line 13). So far, we have selected the method declarations of our concern. Now,
we have to determine the implementations of the selected method declarations
(line 10); only there advice can join the business logic.

Each service will be instantiated once by the environment at start-up time,
i.e. a service is a singleton [14] and started before any component is loaded.
When terminated the environment will notify the services to enable a controlled
shutdown. The differences between a component and a service are summarized
in the following table:

Service Component
number of instances at runtime 1 0..*
can define pointcuts & advice yes no
can be injected yes no
lifecycle controlled by the environment freely definable
instantiated at load time at runtime

2.3 Interaction Between Components and Services

Interactions between services and components can be in either direction: from a
component to a service and vice versa.

The interaction from a component to a service is enabled by constructor-based
dependency injection. For illustration, imagine a shopping cart component that
- as part of its business logic - generates an order confirmation on checkout,
starting with “Dear Mr/Ms CustomerName” (line 2). Hence, the component
must interact with the authentication service (line 3) to get the name of the
current user (line 4).

1 public void checkout(){
2 String confirmation = ”Dear Mr/Ms ”;
3 User user = authenticationService.getUser(this);
4 confirmation += user.getName();
5 ...
6 }

For this purpose, the component defines a constructor that expects as a
parameter a reference to an authentication service (line 3). Hence, whenever the
component is instantiated the environment will pass a reference to the instance
of a corresponding service. Note that AuthenticationService is the common
interface of all authentication services and not a concrete implementation.

1 public ShoppingCartImpl implements ShoppingCart{
2 AuthenticationService authenticationService;
3 public ShoppingCartImpl(AuthenticationService authenticationService){
4 this .authenticationService = authenticationService;
5 }
6 ...
7 }

Let us now consider the interaction of a service with a component. An in-
teraction is required in this direction for services that control the life cycle of

Alice: Modularization of Middleware Using Aspect-Oriented Programming 53

components. If the component cannot appropriately react to such externally
caused changes in its life cycle, it might not work correctly afterward. This re-
quires that the component developer is aware of all possible state changes. They
are defined by the annotation used for this component. As a result, services that
would change the state of a component in an undefined way cannot be used.

For illustration, let us assume that the Session annotation defines that
the possible states of a session component are “does not exist”, “ready” and
“passive” and that the semantics is basically the same as those of Enterprise
Java Stateful Session Beans [1]. Further, the callback methods slcActivate,
slcPassivate and slcRemove to signal state transitions to the component are
defined by the SessionLifeCycleListener interface.

If the developer of a component now implements this interface she/he ensures
that the component will be called back at each state transition. In the following
code, an interaction with a legacy Enterprise Information System is closed or
(re-)established depending on the life cycle event.

1 public class ShoppingCartImpl implements ShoppingCart, SessionLifeCycleListener {
2 // reference to the legacy Enterprise Information System
3 private transient Interaction interaction ;
4 public void slcActivate() {
5 Connection connection = ...;
6 this . interaction = connection.createInteraction ();
7 }
8 public void slcPassivate() { interaction . close (); }
9 public void slcRemove(){ slcPassivate(); }

10 ...
11 }

2.4 The Alice Environment

The Alice environment represents a minimal core with a twofold role:

♦ It provides management functionality to (a) handle the life cycle of services,
(b) instantiate components, and (c) resolve the service to service and com-
ponent to service dependencies.

♦ It provides an extended load-time weaver that (a) checks the properties
defined by annotations, (b) enables to plug-in code transformers, and (c)
weaves advice functionality.

The manager role was discussed as part of the previous sections (dependency
injection); in the following, we will elaborate on the weaver role.

At load-time, Alice “decompiles” a Java class file to an equivalent XML
representation using BAT2XML [15]. This XML representation is used in the
intermediate stages performed by the loader. At the end of the extended loading
process, the XML file is converted back to a standard Java class file and passed
to the Java Virtual Machine.

The first step at load time is to validate that any decorated class, be it a
component, service, or annotated helper class, satisfies all properties defined by
its annotations, if any. Restrictions on structural and behavioral properties of
components are defined as queries in the functional query language XQuery [16],

54 M. Eichberg and M. Mezini

especially designed for XML data sources. The queries defined by the annotations
will be run against the XML representations of the annotated class (elements)
and every selected item will be reported [17].

For illustration, the following query detects the violations of component prop-
erties defined along with the Session annotation (section 2.1). This query is
defined in Session.xirc, the value of the meta-annotation Validate associated
with the Session annotation. The first line selects all subtypes of an interface
with the Session annotation; the “.” in subtypes(.) represents the set of all el-
ements decorated with the annotation for which Validate is a meta-annotation.
Lines 3–5 are XPath [18] expressions that select violations of one of the defined
properties. Line 3 selects methods with synchronization code, line 4 selects in-
vocations of Thread.start() and line 4 selects declarations of non-private and
non-public-final fields.

1 let $classes := subtypes(.)
2 return
3 $classes//method[@synchronized = ”true”] | $classes//monitorenter |
4 $classes//invoke[@methodName=”start” and @declaringClassName=”java.lang.Thread”] |
5 $classes//field [not(@visibility =”private”) and not(@visibility=”public” and @final=”true”)]

The second step at load-time performs code generation and / or transforma-
tion required to implement some services. For example, to implement a passiva-
tion service2 [19] it is necessary that all references to the component are fully
controlled by the service. Otherwise, the service could be bypassed leading to
faulty runtime behavior [20].

Controlling all references to a component can be achieved by generating a
transparent proxy [14] object and passing it to other components instead of the
direct reference3. Since the proxy is transparent for the entire program except for
the passivation service the service has now the necessary control over the “direct
references” to the component and can successfully passivate and activate the
component. The component itself needs eventually to be transformed in order
to replace some references to this by references to the wrapping proxy.

A class that is successfully validated will be transformed, if necessary, by
passing it to all applicable transformers in the order specified in the configura-
tion file of the environment. A transformer is itself provided as a service that
implements the Transformer interface. The latter defines a single method, which
will be called by the environment to pass a representation of the byte code of
a class to be transformed; the method returns the transformed class and / or
other generated classes.

Before actually transforming a class a transformer checks its applicability by
consulting the annotations of the class. E.g., it does not make sense to apply the
proxy transformation to helper classes.

2 A passivation service is used to achieve scalability. It removes a component from
main memory that was not accessed for a certain amount of time (this process is
called passivation) and writes it to secondary storage. Directly before the next access
the component is restored (this is called activation) to handle the method call.

3 In EJB the bean developer would pass the EJBObject to the other component.

Alice: Modularization of Middleware Using Aspect-Oriented Programming 55

Fig. 1. An overview of Alice

The transformation step can be done by executing a set of XSL Transfor-
mations [21].A service that relies on a specific code transformation / generation
service can make this dependency explicit by using the standard dependency
injection mechanism, even though, it does not need to explicitly interact with
the transformation service.

The last step is the weaving of aspects. The pieces of advice to weave are
determined by the services. Hence, all services that define advice need to be
loaded at startup before the classes to be advised. In Alice, XQuery is also used
as the pointcut language, as proposed in [22]. The weaving step evaluates the
pointcut queries defined in the services to select elements in the code that might
yield a join point at runtime. These are the XML elements where to weave advice.

Fig. 1 summarizes the discussion of this section as well as the previous sec-
tions. It depicts the relationship between annotations and the defined restric-
tions, components, services and the environment.

3 Alice and Current Component Models

This section evaluates Alice w.r.t. the problems of current component models
identified in the introduction. In addition, it briefly discusses the relation between
Alice and JBoss [23] one particularly advanced and modular implementation of
the EJB component model. Last but not least, we shortly discuss Alice in relation
to the upcoming EJB 3.0 specification [24].

Evaluation of Alice. Alice does not suffer from the problems of current compo-
nent middleware discussed in the introduction.

First, by means of checked semantic annotations, Alice provides a mechanism
for introducing component concepts in a principled way without restricting it-
self to a particular component model. Annotations play in Alice almost the role
of new language constructs for expressing component semantics. They define
checked properties of elements decorated by them, just as language constructs
would define new semantics that is incorporated for by the language compiler.
Hence, there is no need for unchecked coding conventions and other workarounds

56 M. Eichberg and M. Mezini

which introduce accidental complexity [25]. In contrast to language constructs
that have a fixed semantics, Alice is capable of accommodating several compo-
nent models.

Second, by encapsulating various crosscutting concerns into separate aspects,
and by its ability to load and incorporate only services that are required by
the business components, Alice enables a modular lightweight architecture of
the middleware functionality; the middleware functionality is composed out of
individual services based on application requirements.

Third, as already mentioned, services in Alice can be used to encapsulate
any crosscutting concern, be it middleware or application level. This enables a
uniform programming model and an open platform.

JBoss(Standard). The standard JBoss application server [23] implements the
concept of a micro kernel architecture based on JMX [26]. This kernel provides a
basic infrastructure on which all components and services rely. Hence, it serves
as a least common denominator for the components as well as the services to
plug in. Due to this architecture it is possible to exchange a service (e.g., to
exchange a service for transactions using optimistic locking against one using a
pessimistic locking strategy). However, the implementation is still bound to this
very specific application server and the usage of a service or a component always
requires the core JBoss application server and thus forces a specific architecture
and / or design.

EJB 3.0. The programming model of the next version of the Enterprise Java
Beans (3.0) [24] will rely on the use of annotations to make the development
of components easier. Annotations will be used to automatically generate the
necessary (Local-, Remote-, ...) interfaces and to make an explicit interaction
with the container possible. However, modularization of the infrastructural ser-
vices as well as separation of (business) concerns are not addressed. Also, the
component model is fixed and using other types of components not defined in
the model will be difficult.

4 Alice and Other AO Models

In this section we compare Alice with other aspect-oriented approaches. In
particular we make a deeper comparison of Alice and AspectJ [11] since As-
pectJ represents the most mature aspect-oriented language available and the
conceptual model of AspectJ is incorporated by multiple other approaches
[27, 28, 29].

AspectJ [11] can also be used to modularize individual middleware services. It
does not constrain the development of components and aspects (services) in any
particular way and is already successfully used in many projects [30, 31, 32, 33]
and especially for the implementation of infrastructural services [34, 35, 36, 37].
Alice is similar to AspectJ, as far as the underlying AO model is concerned. It
complements the AO model, however, with a minimal container concept to better
serve the specific needs of distributed component-based software development.

Alice: Modularization of Middleware Using Aspect-Oriented Programming 57

In the following, we briefly emphasize, that such a complement is needed mainly
for three reasons.

First, as indicated in Sec. 2.4, some services require sophisticated code gener-
ation and / or transformation, e.g., the generation of proxies for the passivation
service. However, as discussed in [20] generating proxy objects is not supported
by AspectJ’s inter-type declarations; using a different generation mechanism in-
stead (e.g. Java’s dynamic proxies) is also problematic [20].

Second, even though AspectJ can be used to enforce design properties [38,
12], it was not designed to enforce structural properties; in [39], we argue that
AspectJ’s declare warning / error constructs provide only limited support
for checking properties of the program structure. In our context this implies that
AspectJ’s support for checking the applicability of a service to a specific class is
limited; e.g., it is not possible to detect synchronized blocks within a class - a
service aspect for handling concurrent access would conflict with such a class.

Third, AspectJ lacks a mechanism to enable components to require the pres-
ence of an aspect in a deployment environment without committing to a partic-
ular implementation. However, such a mechanism is needed, a component that
needs to get an authenticated user requires an authentication aspect, otherwise
it cannot be used4.

These three tasks are performed by the container in Alice - besides weav-
ing aspects. In addition to complementing the AO concepts with a container,
another difference between Alice and AspectJ concerns the pointcut language.
In [40] the authors discuss the problem of arranged patterns: Often pointcut def-
initions are based on naming conventions which leads to a coupling between an
aspect and the components. Such a coupling is not acceptable for systems with
hundreds of components; a clear separation between the component developers
and the developers of the infrastructural services is needed5. A better separation
is achieved in Alice by using annotations to select join points in pointcuts. Now,
one might argue that adding annotations in the component code is also a form
of crosscutting. We will discuss this issue in a dedicated place in Sec. 5.

HyperJ [41, 42] supports a flexible and multi-dimensional separation of con-
cerns. In contrast to AspectJ (and similar approaches), HyperJ does not require
that all aspects (concerns) are coded relative to the same model, instead each
concern can be modeled according to its most appropriate domain model. How-
ever, HyperJ supports a more coarse-grained join point model than AspectJ.
E.g., it is not possible to add functionality before, after or around a field access,
which is often required for the implementation of services such as persistence.
Further, the integration of different hyperslices relies on the matching of method
/ class names making it hard to develop off-the-shelf reusable services. Detailed

4 Using aspectOf would bind the component to a particular implementation of the
service.

5 In case of the success stories mentioned at the beginning of this section the im-
plementation of the infrastructural services using AspectJ were done by the same
people who developed the base application.

58 M. Eichberg and M. Mezini

knowledge about a hyperslice (implementing a concern) is required before a hy-
permodule (specifies the interaction of multiple hyperslices) can correctly be
specified.

The approach described by Duclos et al. in [43] combines the ideas of As-
pectJ, containers and Meta-Object Protocols (MOPs), resulting in a program-
ming model where aspects can be developed independent of the component ap-
plication. An aspect user language controls the weaving and code generation step
to create necessary classes (like proxies for instance) for the components as well
as the interaction between an aspect and the component virtual environment
(CVM). The CVM builds the least common denominator on which the compo-
nents and aspects rely. However, in contrast to our approach they have a very
limited pointcut language restricted to aspectualizing the CVM. Using aspects
to model cross-cutting business functionality is not intended. Neither support to
check the applicability of an aspect for a set of components nor the interaction
between a component and a service are addressed.

In [37] and [44] Zhang and Jacobsen analyze three different CORBA [2] ORBs,
by mining for aspects inherent in these middleware implementations and apply-
ing AspectJ to modularize these concerns. Besides the common aspects such as
logging and monitoring, they identify various domain-specific aspects related to
the creation and handling of objects in CORBA. In [45] they describe the suc-
cessful modularization of several of those aspects in the CORBA ORB ORBacus
and provide encouraging results with respect to the achievable level of modu-
larization using AOP. In [46] they build on top of these results and develop the
method of horizontal decomposition, a set of principles for guiding the aspect-
oriented decomposition of a middleware system. The basic idea is to identify a
minimal core and then to use aspects to extend the functionality of the core
to provide additional services. A similar idea was also presented by Hunleth et.
al. [47] but a detailed discussion of their architecture is not available. However,
in contrast to Alice the minimal core identified by Zhang and Jacobsen already
provides substantial middleware service (e.g. distribution). Further, every aspect
is developed in relation to a particular core making an aspect dependent on it
and susceptible to changes if the core evolves. But, they also note that the re-
factorization of the ORB is not complete and that they have not yet achieved
a fully aspect oriented middleware platform. Further, in contrast to our work,
their work builds upon an existing component model and implementations of it
and is geared toward identifying and refactoring as many concerns as possible
in that particular context, using an existing AOP approach.

JBoss AOP [28] is a small framework for aspect-oriented programming which
comes with some pre-defined aspects (for transactions, etc.). The set of sup-
ported join points and and the pointcut languag are basically a subset of those
supported by AspectJ but with the additional support for annotations (meta-
data). However, JBoss AOP is based on intercepting the original control flow
and invoking so-called interceptors which execute the advice functionality. JBoss
AOP has no support for introductions or other forms of code generation / trans-
formation. Further, it proposes no standard way for the interaction between a

Alice: Modularization of Middleware Using Aspect-Oriented Programming 59

component and a service (e.g. security) and checking of structural properties is
also not possible. The Spring (AOP) Framework [48] and Jac [29] are similar
to JBoss AOP. They are also interceptor based approaches with practically the
same features and limitations.

AspectJ2EE [5] is geared toward a modularized implementation of the infras-
tructural services offered by an EJB container as an aspect library. The architec-
ture enables to add or modify services. As in our approach the components are
aspectualized at deploy time. However, in contrast to Alice AspectJ2EE is lim-
ited in several ways: (1) all components must be developed according to the EJB
component model. This severly restricts the usability of AspectJ2EE as a general
platform for component based software development and makes the components
dependent on the EJB component framework. (2) adding additional aspects or
modifying existing ones is possible but no mechanism exists to check that an
aspect can actually be used for a component. (3) Aspects can only be defined
for Enterprise JavaBeans and not for all classes of a project.

5 Annotations and Crosscutting

In this section, we briefly consider the question whether or not annotations
introduce crosscutting. Our discussion focuses only on the particular use of an-
notations in Alice; a general discussion of the issue is out of the scope for this
paper.

We argue that in their particular use in Alice, annotations do not add cross-
cutting. The reason is that annotations are not used in Alice as “syntactic an-
chors” to bind non-functional aspects to a component. Such a use would indeed
re-introduce non-modularized crosscutting. The primary function of annotations
in Alice is to declare that the annotated element has a certain guaranteed be-
havior; they make implicit information explicit, e.g., that a method is a business
method, or that session handling is required. These are inherent properties of a
component and are independent of the application of which it is a part of.

In our opinion, annotations that describe a property of a component should
be defined along with it. They are in our view a substitute for the lack of
component language constructs. As such, they have benefits not related to
modularizing crosscutting concerns such as, better documentation and enforce-
ment of properties. Furthermore, the component developers know exactly the
properties of their component. So, they should specify them along with the
component.

For annotations that are application specific (e.g., annotations declaring the
transaction properties of a method), a step at the very beginning of the weav-
ing process could be added that processes declare annotations statements as
envisioned for the next version of AspectJ [11]. A declare annotations state-
ment would allow a modularization of the decision which methods have a certain
property (e.g., are transactional).

60 M. Eichberg and M. Mezini

6 Future Work

The main goal of our work was to present a concise programming model that
represents a significant improvement when compared with the current state-of-
the-art in CBSD. Thus far, we did not target compilation and execution speed
and due to the heavy usage of XML improvements of our prototype needs to be
made before it can be used for larger middleware projects. Further, the mecha-
nisms used to control the transformation process and to ensure that a component
is appropriately transformed are sufficient for projects with few different types of
transformations but if more different transformations are to be carried out more
sophisticated mechanisms are required to ensure the integrity of the system, i.e.
to check that two transformations do not influence each other in an unpredictable
or unwanted manner. These topics as well as a throughout evaluation are going
to be addressed in future work.

7 Summary

We have presented a programming model that allows the separation of infras-
tructural services in off-the-shelf reusable aspects. This is made possible by a
set (of standardized) annotations which are used by the component developer
to provide additional information about the component and the join points for
aspects. The aspect developer uses the annotations to bind the functionality to
a component without requiring any knowledge about a component’s concrete
implementation. We have further presented a model how to handle interactions
between a component and a service and how to deal with the interaction of
components with legacy systems. The entire functionality is provided by a small
fully generic environment that does not imply a specific component model. To
the best of the authors knowledge this is the first approach that fully separates
all concerns of a middleware platform in different aspects. By doing so, a level
of adapatibility and genericity of a middleware platform for CBSD is achieved
that was not available before.

References

1. DeMichiel, L.G.: Enterprise JavaBeans Specification, Version 2.1. SUN Microsys-
tems (2003)

2. Group, O.M.: Corba components 3.0. Specification formal/02-06-65, OMG (2002)
3. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms.

In: Proceedings of the 17th European Conference on Object-Oriented Program-
ming, Springer (2003) 2–28

4. Pichler, R., Ostermann, K., Mezini, M.: On aspectualizing component models.
Software Practice and Experience 33 (2003) 957–974

5. Cohen, T., Gil, J.Y.: AspectJ2EE = AOP + J2EE - towards an aspect based,
programmable and extensible middleware framework. In: Proceedings of the 18th
European Conference on Object-Oriented Programming, Springer (2004)

Alice: Modularization of Middleware Using Aspect-Oriented Programming 61

6. Jordan, D., Russell, C.: JDO or CMP? http://www.onjava.com/lpt/a/3763 (2003)
7. Tate, B.: For JDO, the time is now. http://www.devx.com/Java/Article/

20422/1954?pf=true (2004)
8. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-oriented programming. In: Proceedings of the 11th European
Conference on Object-Oriented Programming, Springer (1997) 220–242

9. Bloch, J.: A metadata facility for the java programming language. Java Specifica-
tion Request 175 (2002)

10. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms.
In: Proceedings of the 17th European Conference on Object-Oriented Program-
ming, Springer (2003)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Proceedings of the 15th European Conference on Object-
Oriented Programming, Springer (2001) 327–355

12. Laddad, R.: AspectJ in Action. Manning (2003)
13. Fowler, M.: Inversion of control containers and the dependency injection pattern.

http://martinfowler.com/articles/injection.html (2004)
14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley

(1995)
15. Eichberg, M.: BAT2XML. http://www.st.informatik.tu-darmstadt.de/BAT (2004)
16. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:

XQuery 1.0: An XML query language. Working draft 12 november 2003,
(W3C)

17. Eichberg, M., Mezini, M., Ostermann, K., Schfer, T.: Xirc: a kernel for cross-
artifact information engineering in software development environments. In: Pro-
ceedings of the 11th IEEE Working Conference on Reverse Engineering, IEEE
Computer Society (2004) to appear.

18. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: Xml path language (xpath) 2.0. Working draft 12 november 2003,
(W3C)

19. Völter, M., Schmid, A., Wolff, E.: Server Component Patterns: Component Infras-
tructures Illustrated with EJB. John Wiley & Sons (2002)

20. Eichberg, M.: The proxy inter-type declaration. In: Proceedings of the third
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware. (2004)

21. Kay, M.: Xsl transformations (xslt) version 2.0. Working draft 12 november 2003,
(W3C)

22. Eichberg, M., Mezini, M., Ostermann, K.: First-class pointcuts as queries. In:
Proceedings of the Second ASIAN Symposium on Programming Languages and
Systems, Springer (2004) to appear.

23. JBoss Inc.: JBoss 3.2. http://www.jboss.org (2003)
24. DeMichiel, L.G.: Enterprise JavaBeans Specification, Version 3.0. Java Specifica-

tion Request 220 (2004)
25. Brooks, F.P.: The Mythical Man-Month. Addison Wesley (1995)
26. Sun Microsystems: Java management extensions (JMX). White paper (1999)
27. Mezini, M., Ostermann, K.: Conquering aspects with caesar. In: Proceedings of the

2nd International Conference on Aspect-Oriented Software Development (AOSD),
ACM Press (2003) 90–99

62 M. Eichberg and M. Mezini

28. JBoss Inc.: JBoss aop beta3. http://www.jboss.org (2004)
29. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: Jac: A flexible solution for

aspect-oriented programming in java. In: Proceedings of the third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns,
Springer (2001) 1–24

30. Walker, R.J., Baniassad, E.L.A., Murphy, G.C.: An initial assessment of aspect-
oriented programming. In: Proceedings of the 21st International Conference on
Software Engineering, (IEEE Computer Society) 120–130

31. Lippert, M., Lopes, C.V.: A study on exception detecton and handling using aspect-
oriented programming. In: Proceedings of the 22nd International Conference on
Software Engineering, ACM Press (2000) 418–427

32. Bodkin, R., Colyer, A., Hugunin, J.: Applying aop for middlerware platform inde-
pendence. In: 2nd International Conference on Aspect-Oriented Software Devel-
opment. (2003) Practitioner Reports.

33. Colyer, A., Clement, A.: Large-scale aosd for middleware. In: Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development, ACM Press
(2004) 56–65

34. Rashid, A., Chitchyan, R.: Persistence as an aspect. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development, ACM Press
(2003) 120–129

35. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence
aspects with aspectj. In: Proceedings of the 17th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ACM Press (2002) 174–190

36. Gudmundson, S.: An Aspect-Oriented Distribution Service (1999)
37. Zhang, C., Jacobsen, H.A.: Refactoring middleware with aspects. IEEE Transac-

tions on Parallel and Distributed Systems 14 (2003) 1058–1073
38. Shomrat, M., Yehudai, A.: Obvious or not? regulating architectural decisions using

aspect-oriented programming. In: Proceedings of 1st International Conference on
Aspect-Oriented Software Development, ACM Press (2002) 3–9

39. Eichberg, M., Mezini, M., Schäfer, T., Beringer, C., Hamel, K.M.: Enforcing
system-wide properties. In: Proceedings of the 15th Australian Software Engi-
neering Conference, IEEE Computer Society (2004)

40. Gybels, K., Brichau, J.: Arranging language features for more robust pattern-based
crosscuts. In: Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development, ACM Press (2003) 60–69

41. Ossher, H., Tarr, P.: Using multidimensional separation of concerns to (re)shape
evolving software. Communications of the ACM 44 (2001) 43–50

42. Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N negrees of separation:
multi-dimensional separation of concerns. In: Proceedings of the 21st International
Conference on Software Engineering, IEEE Computer Society (1999) 107–119

43. Duclos, F., Estublier, J., Morat, P.: Describing and using non functional aspects in
component based applications. In: Proceedings of the 1st International Conference
on Apect-Oriented Software Development, ACM Press (2002) 65–75

44. Zhang, C., Jacobsen, H.A.: Quantifying aspects in middleware platforms. In:
Proceedings of 2nd International Conference on Aspect-Oriented Software Devel-
opment, ACM Press (2003) 130–139

45. Zhang, C., Jacobsen, H.A.: Re-factoring middleware systems: a case study. In:
On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,
Springer (2003) 1243–1262

Alice: Modularization of Middleware Using Aspect-Oriented Programming 63

46. Zhang, C., Jacobsen, H.A.: Resolving implementation convolution in middleware
systems. In: Proceedings of the 19th Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ACM Press (2004) to appear.

47. Hunleth, F., Cytron, R., Gill, C.: Building customizable middleware using aspect
oriented programming. citeseer.ist.psu.edu/hunleth01building.html (2001)

48. Johnson, R.: Introducing the spring framework. http://www.theserverside.com/
articles/article.tss?l= SpringFramework (2003)

Service Discovery Protocol Interoperability in
the Mobile Environment

Yérom-David Bromberg and Valérie Issarny

INRIA-Rocquencourt,
Domaine de Voluceau, 78153 Le Chesnay, France
{David.Bromberg, Valerie.Issarny}@inria.fr

Abstract. The emergence of portable computers and wireless technolo-
gies has introduced new challenges for middleware. Mobility brings new
requirements and is becoming a key characteristic. Mobile devices may
move around different areas and have to interact with different types of
networks, services and may be exposed to new communication paradigms.
Thus, mobile distributed systems need to dynamically detect and adapt
their interaction protocols to interoperate with services available in the
environment. As a result, middleware for mobile devices must overcome
two heterogeneity issues to provide interoperability in the mobile en-
vironment, i.e, heterogeneity of discovery protocols and of interaction
protocols between services. Whereas adaptation techniques from reflec-
tive middleware are suitable for the latter, it is more problematic for the
former if both issues are addressed concurrently. Specifically, reflective
mechanisms consume too many resources like bandwidth, memory and
CPU, which are limited on the mobile devices. This paper first highlights
why current solutions to interoperability fail to realize service discovery
protocol interoperability with both high performance and low resource
consumption. Second, this paper addresses this open issue by using soft-
ware architecture concepts enhanced with event-based parsing techniques
to provide efficient, lightweight and flexible mechanisms to bring full ser-
vice discovery interoperability to any existing mobile platform.

1 Introduction

In the mobile computing domain, middleware holds a predominant role. Com-
munication relationships amongst application components involve the use of
protocols, making applications tightly coupled to middleware. Additionally, to
overcome wireless networks constraints, like limited bandwidth, poor network
quality of service and either voluntary or forced frequent disconnection, several
communication models have arisen. Thus, as it exists many styles of commu-
nication and consequently many styles of middleware, we have to deal with
middleware heterogeneity [1]. Significantly, an application implemented upon a
specific middleware cannot interoperate with services developed upon another.
Similarly, we cannot predict at design time the requirements needed at run-time
since the execution environment is not known. However, no matter which un-
derlying communication protocols are present, mobile nodes must both discover

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 64–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Service Discovery Protocol Interoperability in the Mobile Environment 65

and interact with the services available in their vicinity. More precisely, ser-
vice discovery protocols enable mobile nodes to find and use networked services
without any previous knowledge of their specific location. Several Service Dis-
covery Protocols (SDP), like Jini [2], SLP [3], UPnP [4] and Salutation [5], are
now available. And, with the advent of both mobility and wireless networking,
SDPs are taking on a major role, and are the source of a major heterogeneity
issue across middleware. Furthermore, once services are discovered, applications
need to use the same interaction protocol to allow unanticipated connections
and interactions with them. Consequently, a second heterogeneity issue appears
among middleware. Summarizing, middleware for mobile devices must overcome
two heterogeneity issues to provide interoperability in the mobile environment,
i.e.:

1. Heterogeneity of service discovery protocols, and
2. Heterogeneity of interaction protocols between services.

In addition, both SDPs and interaction protocols are not protected from evo-
lution across time. Indeed, an application may neither interact correctly nor
be compatible with services if they use different versions of the same protocol
[6]. Interoperability is also difficult between devices made by different man-
ufacturers as they can implement differently a standardized protocol. Proto-
col evolution increases communication failure probability between two mobile
devices.

As outlined above, interoperability among entities of a spontaneous ad hoc
network, which is formed by the random arrival of mobile devices for short
periods of time, is becoming a real issue to overcome. A portable computer
must be aware of its dynamic environment that evolves over time, and further
adapt its communication paradigms according to the environment. Thus, mobile
distributed systems must provide efficient mechanisms to detect and interpret
protocols currently used, which are not known in advance. Furthermore, de-
tection and interpretation must be achieved without increasing consumption of
resources that are limited on the mobile devices. This paper introduces base
mechanisms for achieving interoperability among heterogeneous SDPs, which
consider the above mobility requirements. We reuse concepts from software ar-
chitecture enriched with event-based parsing techniques to drastically improve
SDP interoperability, enabling mobile applications to be efficiently aware of their
environment. The originality of our approach comes from the trade offs achieved
among efficiency, interoperability and flexibility. Our solution may further be
applied to any existing middleware platform.

In the following, we first examine how reflective middleware manages inter-
operability among heterogeneous SDPs, highlighting the current drawbacks that
need to be addressed to provide efficient SDP interoperability (§2). This leads us
to investigate a solution grounded in the software architecture domain to over-
come the limitation of reflective middleware (§3). Then, we present the design
of our proposal to bring both efficient and flexible SDP interoperability (§4).
Finally, we conclude by a summary of our contribution (§5).

66 Y.-D. Bromberg and V. Issarny

2 Reflective Middleware to Cope with Middleware
Heterogeneity

New techniques must be used to both offer lightweight mobile systems and sup-
port their adaptation according to the dynamics of the mobile environment.
Classic middleware are not the most suitable for the mobile domain. Their design
is based on fixed network and resources abundance. Moreover, network topolo-
gies and bandwidth are fixed over time. Hence, quality of service is predictable.
Furthermore, with fixed network in mind, the common communication paradigm
is synchronous and connections are permanent. However, many new middleware
solutions, designed to cope with mobility aspects, have been introduced, as sur-
veyed in [7]. From this pool of existing middleware, more or less adapted to the
constraints of the mobile environment, reflective middleware seem to be flexi-
ble enough to fulfill mobility requirements, including providing interoperability
among networked services.

A reflective system enables applications to reason and perform changes on
their own behavior. Specifically, reflection provides both inspection and adapta-
tion of systems at runtime. The former enables browsing the internal structure
of the system, whereas the latter provides means to dynamically alter the system
by changing the current state or by adding new features. Thus, the middleware
embeds a minimal set of functionalities and is more adaptive to its environment
by adding new behaviors when needed. This concept, applied to both service
discovery and interaction protocols, allows accommodating mobility constraints.
This is illustrated by the ReMMoC middleware [1], which is, at this time, the
only one to overcome simultaneously SDPs and interaction protocols heterogene-
ity. The ReMMoC platform is composed of two component frameworks [1, 8]: (i)
the binding framework that is dedicated to the management of different inter-
action paradigms, and (ii) the service discovery framework that is specialized in
the discovery of the SDPs currently used in the local environment. The binding
framework integrates as many components as interaction protocols supported by
the platform. The binding framework can dynamically plug on demand, one at
time or simultaneously, different components corresponding to the different inter-
action paradigms (e.g., publish/subscribe, RPC...). Correspondingly, the service
discovery framework is composed of as many components as of SDPs recognized.
For example, SLP and UPnP can be either plugged together or separately, de-
pending of the context. Obviously, such plug in of components applies only to
components that are specifically developed for the ReMMoC platform. It is fur-
ther important to note that the client application is specific to the ReMMoC
API but is independent from any protocol, the interested reader being referred
to [9] for further details on the mapping of an API call to the current binding
framework.

Although ReMMoC enables mobile devices to use simultaneously different
SDPs and interaction protocols, this still requires the environment to be moni-
tored to allow ReMMoC to detect over time the SDPs and interaction protocols
that need be supported/integrated, due to the very dynamic nature of the mobile

Service Discovery Protocol Interoperability in the Mobile Environment 67

environment. Such a knowledge about the environment may be made available
from a higher level, which would provide the environment profile updated by
context-based mechanisms that are passed down to the system [1, 10]. But, this
increases the weight and the complexity of the overall mobile system. Alter-
natively, the system can either periodically check or continuously monitor the
environment. However, a successful lookup depends on the pluggable discovery
components that are embedded. The more there are components, better is the
detection. But, the size of the middleware and the resources needed grow with
the amount of embedded components. That is particularly not recommended for
mobile devices. Furthermore, as long as the current SDP has not been found,
the middleware has to reconfigure itself repeatedly with the available embedded
components to perform a new environmental lookup until it finds the appropriate
protocol. As a consequence, this leads both to an intensive use of the bandwidth
already limited due to the wireless context, and to a higher computational load.
To save these scarce resources, a plug-in component, called discoverdiscovery,
dedicated to SDP detection operations, has been added to the ReMMoC service
discovery framework. In an initialization step, mini-test-plug-ins, implemented
for each available SDP, are connected to discoverdiscovery to perform a test by
both sending out a request and listening for responses. Once the detection is
achieved, a configuration step begins by load-ing the corresponding complete
SDP plug-ins.

The above Mini-test-plug-ins are lightweight and so consume fewer resources.
Nevertheless, they increase the number of embedded plug-ins, do not decrease
the use of the bandwidth and finally have to be specifically implemented. Last
but not least, rather than embedding as many components as possible to provide
the most interoperable middleware, it seems to be more efficient to design an op-
timized lightweight middleware, which enables loading from the ambient network
new components on demand to supplement the already embedded ones [1, 11].
But, still, it is necessary to discover, at least once, the appropriate protocols
to interact with a service providing such a capability. This is rather unlikely to
happen since we do not know the execution context (i.e., all potential available
resources and services at a given time).

Summarizing, solutions to interoperability based on reflective techniques do
not bring simultaneously interoperability and high performance. The SDP in-
teroperability issue needs to be revisited to improve efficiency of SDP detection,
interpretation and evolution. Furthermore, the ReMMoC reflective middleware
does not provide a clean separation between components and protocols. In fact,
pluggable components are tied to their respective protocols. For example, to
maintain interoperability between several versions of the same SDP, a pluggable
component is needed for each version. We need a fine grained control over pro-
tocols. Our approach is thus to decouple components from protocols with the
use of concepts inherited from software architecture enhanced with event-based
parsing techniques.

68 Y.-D. Bromberg and V. Issarny

3 Software Architecture to Decouple Components from
Protocols

Software architecture concepts, like components and connectors to decouple ap-
plications from underlying protocols, offer an elegant means for modeling and
reasoning about mobile systems [12]. Components abstract computational ele-
ments and bind with connectors that abstract interaction protocols, through
interfaces, called ports, which correspond to communication gateways [13]. Sim-
ilarly, connectors bind with components through connector interfaces named
roles (see Figure 1). Regarding the issue of achieving protocol interoperability,

Component
A

Connector role

Component port Interaction is possible only if component
port and connector role match.

The interaction between both entities is
specified with the connector’s glue proc-
ess.

Connector
Role + glue

Fig. 1. Components decoupled from protocols

this may be addressed through reasoning about the compatibility of port and
role. This may be realized using, e.g., the Wright Architecture description lan-
guage [14]. Wright defines CSP-like processes to model port and role behaviors.
Then, compatibility between bound port and role is checked against, accord-
ing to the CSP refinement relationship. However, the Wright approach does not
bring enough flexibility with respect to dealing with the adaptation of port and
role behavior so as to make them match when they share an identical aim, as,
e.g., in the case of service discovery. To overcome the aforementioned limi-
tation, [6] reuses the architectural concepts of component, connector, port and
role. However, port and role behaviors are modeled by handlers of unordered
event streams rather than by abstract roles processes. The challenge is then to
transform protocol messages into events, and interpret them according to a pro-
tocol specification. To achieve this, an event-based parsing system, composed
of generator, composer,unit, parser andproxy, is used (see Figure 2). A protocol
specification feeds a generator that generates a dedicated parser and composer.
The former takes, as input, protocol messages that are decomposed as tokens and
outputs the corresponding events. The latter does the invert process; it takes se-
ries of events and transforms them into protocol messages. Parser and composer
form a unit, which is specific to one protocol. Generators are able to generate on
the fly new units, as needed, for different specifications. As a result, whatever

Service Discovery Protocol Interoperability in the Mobile Environment 69

Event Based
Parsing system

Unit

Parser

Composer

Generator

Creates

Protocol
Message

Protocol
Message

Inputs to

Inputs to

Outputs

Outputs

Protocol specification

SpecifiesSpecifies

Inputs to

Protocol
Events

Protocol
Events

Fig. 2. Event based parsing system for achieving protocol interoperability

Proxy

Event
Handler

Component
A

Event-Based
Parsing system

Unit

Parser

Composer

Generator

Event-Based
Parsing system

Unit

Parser

Composer

Generator

Creates
Component

B

Creates

Fig. 3. Interaction between two components

is the underlying protocol, messages from a component are always transformed
into events through the adequate parser and conversely, events sent towards a
component are always transformed into protocol messages understood by this
component through its adequate composer. Furthermore, events are sent from
one component to another through a proxy whose role is to forward handled
events to the composer of the remote component (see Figure 3). The latter can
either discard some events if they are unknown or force the generator to produce
a new unit more suitable to parsed events. Thus, any connector gets represented

70 Y.-D. Bromberg and V. Issarny

as a universal event communication bus, which is able to transport any event, in-
dependently of any protocol, as the protocol reconstruction process is let to each
extremity. Thereby, event streams are hidden from components and so protocol
interoperability is maintained.

Summarizing, event-based parsing is interesting in theory for its flexibility,
and opens new perspectives to overcome protocols heterogeneity. However, it
is still confined to theory: it has been applied only to protocol evolution issue,
as it is simpler to test protocol interoperability between two similar protocols
that differ with only small changes. Therefore, [6] addresses heterogeneity issues
neither for SDPs nor for interaction protocols but brings interesting concepts.
In the next section, we show how event-based parsing applied to software ar-
chitecture enables efficient SDP detection and interoperability in the mobile
environment.

4 Event-Based Parsing for Discovery Protocol
Interoperability

With the emergence of mobility and wireless technologies, SDP heterogeneity
becomes a major issue. ReMMoC is currently the only middleware to provide
a first approach to resolve this issue through the use of the pluggable compo-
nent philosophy. However, as stated earlier, this solution incurs high resource
consumption (i.e., bandwidth, memory and CPU). Our objective is to provide a
much more powerful solution, dedicated to the ad hoc network context, which
both induces low resource consumption and introduces a lightweight mechanism
that may be adapted easily to any platform. To achieve this challenge, we reuse
the component and connector abstractions, and event-based parsing techniques
from software architecture. Moreover, as our aim is to provide interoperability
to the greatest number of portable devices, we base our technology on IP. The
following first briefly introduces conceptual similarities among SDPs (§4.1), and
then details our solution, addressing SDP detection (§4.2) and interoperability
(§4.3).

4.1 Conceptual Similarities Among SDPs

The majority of SDPs support the concepts of client, service and repository. In
order to find needed services, clients may perform two types of request: unicast or
multicast. The former implies the use of a repository, equivalent to a centralized
lookup service, which aggregates services information from services advertise-
ments. The latter is used when either the repository’s location is not known or
there does not exist any repository in the environment. Similarly, services may
announce themselves with either unicast or multicast advertisement depending
on whether a repository is present or not. From the aforementioned approaches,
two SDP models are identified, irrespectively of the repository’s existence:

Service Discovery Protocol Interoperability in the Mobile Environment 71

1. The passive discovery model, and
2. The active discovery model.

When a repository exists in an environment, the main challenge for clients and
services is to discover the location of the repository, which acts as a mandatory
intermediary between clients and services [3]. In this context, using the pas-
sive discovery model, clients and services are passively listening on a multicast
group address specific to the SDP used and are waiting for a repository mul-
ticast advertisements. On the contrary, with an active discovery model, clients
and services send multicast requests to discover a repository that sends back
a unicast response to the requester to indicate its presence. In a ”repository-
less” context, a passive discovery model means that the client is listening on a
multicast group address that is specific to the SDP used to discover services.
Obviously, the latter periodically send out multicast announcement of their ex-
istence to the same multicast group address. In contrast, with a repository-less
active discovery model, the roles are exchanged. Thereby, clients perform period-
ically multicast requests to discover needed services and the latter are listening
to these requests. Furthermore, services reply unicast responses directly to the
requester only if they match the requested service. To summarize, most SDPs
support both passive and active discovery with either optional or mandatory
centralization points.

Note that although service repositories reduce both bandwidth consumption
and time for service location, they are not adequate to the dynamic nature of
the mobile domain. All the entities from an ad hoc network form spontaneously
a purely peer-to-peer architecture, which does not rely on any centralization
point. Thus, SDPs, like Jini [2], exclusively based on a lookup server, break the
peer-to-peer model and hence, conceptually, it is not advised to use it. However,
we introduce a solution to SDP interoperability that supports almost all types
of SDPs. The only exception is for the Jini SDP that is tied to the Java language
and hence makes it harder to achieve interoperability because it requires that all
mobile devices embed a Java virtual machine. In addition, properties of other
SDPs must be Java byte-code encoded to allow interoperability with Jini clients.
Addressing such an issue is part of our future work so as to fully support SDPs
interoperability.

The two next sections detail our solution to SDPs interoperability, which is
compatible with both the passive and active discovery models. However, when
the SDP provides both models, the passive discovery model should be preferred
over the active discovery model. Indeed, with the latter, the requester’s neighbors
do not improve their environment knowledge from the requester’s lookup because
services, that the requester wishes to locate, send only unicast replies directly
to the requester. So, the services’ existence is not shared by all the entities
of the peer-to-peer network. Thus,it is unfortunate to not take benefit from the
bandwidth consumption caused by the clients’ multicast lookups. In this context,
services’ multicast announcements provide a more considerable added value for
the multicast group members. Secondly, in a highly dynamic network, mobile
devices are expected to be part of the network for short periods of time. Thus,

72 Y.-D. Bromberg and V. Issarny

Monitored Environment
Passively scanned

Monitor
Component

Multicast group

Multicast group

Service
Multicast Advertisements

Client
Multicast Requests

SDP1

SDP2

� SDP 1 detected
� SDP 2 detected

The monitor component pas-
sively scans the environment
on the SDP-IANA-registered
UDP/TCP ports.

UDP/TCP ports

1

2

Fig. 4. Detection of active and passive SDPs through the monitor component

services’ repetitive multicast announcements provide a more accurate view of
their availability. Therefore, the passive discovery model saves more the scarce
bandwidth resources than the active discovery model.

4.2 SDP Detection

Basically, all SDPs use a multicast group address and a UDP/TCP port that
must and have been assigned by the Internet Assigned Numbers Authority
(IANA). Thus, assigned ports and multicast group addresses are reserved, with-
out any ambiguity, to only one type of use. Typically, SDPs are detected through
the use of their respective address and port. These two properties form unique
pairs. The latter may be interpreted as a permanent SDP identification tag.
Furthermore, it is important to notice that an entity may subscribe to several
multicast groups and so may be simultaneously a member of different types of
multicast groups. These only two characteristics are sufficient to provide simple
but efficient environmental SDP detection. Due to the very dynamic nature of
the ad hoc network, the environment is continuously monitored to detect changes
as fast as possible. Moreover, we do not need to generate additional traffic. We
discover passively the environment by listening to the well-known SDP multicast
groups. In fact, we learn the SDPs that are currently used from both services’
multicast announcements and clients’ multicast service requests. As a result, the
specific protocol of either the passive or active service discovery may be deter-
mined. To achieve this feature, a component, called monitor component, embeds
two major behaviors (see Figure 4) :

1. The ability to subscribe to several SDP multicast groups, irrespectively of
their technologies; and

2. The ability to listen to all their respective ports.

Service Discovery Protocol Interoperability in the Mobile Environment 73

Figure 4 depicts the mechanism used to detect active and passive SDPs in a
repository-less context. The monitor component, located at either the client side
or service side, joins both the SDP1 and SDP2 multicast groups and listens to
the corresponding registered UDP/TCP ports. SDP1 and SDP2 are identified
by their respective identification tag. However, SDP1 is based on an active dis-
covery model. Hence, clients perform multicast requests to the SDP1 multicast
group to discover services in their vicinity. The monitor component, as a member
of the SDP1 multicast group, receives client requests and thus is able to detect
the existence of SDP1 in the environment as data arrival on the SDP1-dedicated
UDP/TCP port identifies the discovery protocol. Still, in Figure 4, SDP2 is based
on a passive discovery model. So, services advertise themselves to the SDP2 mul-
ticast group to announce their existence to their vicinity. Once again, similarly to
SDP1, as soon as data arrives at the SDP2-dedicated UDP/TCP port, the mon-
itor component detects the SDP2 protocol. The monitor component is able to de-
termine the current SDP(s) that is(are) used in the environment upon the arrival
of the data at the monitored ports without doing any computation, data interpre-
tation nor data transformation. It does not matter what SDP model is used (i.e.,
active or passive) as the detection is not based on the data content but on the
data existence at the specified UDP/TCP ports inside the corresponding groups.

This component is easy to implement, as both subscription and listening are
solely IP features. Hence, all the mobile middleware based on IP support the
monitor component. Obviously, the latter maintains a simple static correspon-
dence table between the IANA-registered permanent ports and their associated
SDP. Hence, the SDP detection only depends on which port raw data arrived.
Therefore, the SDP detection cost is reduced to a minimum.

Our monitor component can be either integrated into the ReMMoC middle-
ware or considered as one primary element from a larger software architecture
that we describe in the next section. The current ReMMoC discoverdiscovery
plug-in may in particular be replaced by our monitor component, which avoids
both implementing mini-test-plug-in for each available SDP and their loading
just to perform SDP detection. In this way, we save both scarce bandwidth con-
sumption and computation resources. However, once the detection is achieved,
further processing is left to the appropriate SDP plug-in. The ReMMoC SDP
configuration step then stays unaltered.

4.3 SDP Interoperability

From a software architecture viewpoint, SDP detection is just a first step towards
SDP interoperability and represents a primary component. The main issue is still
unresolved: the incoming raw data flow, which comes to the monitor component,
needs to be correctly interpreted to deliver the services descriptions to the appli-
cation components. To support such functionality, we reuse event-based parsing
concepts (see Figure 5). As a result, upon the arrival of raw data at monitored
ports (step 1), the monitor component detects the SDP that is used, and sends a
corresponding event to the generator (step 2), that instantiates the appropriate
parser (step 3) to successfully transform the raw data flow into a series of events

74 Y.-D. Bromberg and V. Issarny

Monitor
Component

Generator

SDP detection

1900

1848

Monitored
Environment Virtual connector

Unidirectional Event communication bus

SDP interoperability

Parser Proxy Composer Application
Component

1

2

3

4 5 6 7

239.255.255.250:1900 : UPnP
239.255.255.253:1848 : SLP
………………………………

Correspondence table

Fig. 5. SDP detection & interoperability mechanisms

(step 4). The parser extract semantic concepts as events from syntactic details
of the SDP detected. Then, the generated events are delivered to a proxy (step
5). In its turn, the proxy forwards handled events to the local components’ com-
posers (step 6). Contrary to [6], parser and composer are not coupled by type.
As events bring the necessary abstraction from the SDP syntactic details, events
from a parser specific to one SDP are understood by a composer dedicated to
another SDP.

The communication between the parser and the composer does not depend
on any syntactic detail of any protocol. They communicate at a semantic level
through the use of events. In fact, a fixed set of common events has been de-
fined for all SDPs. The set of common events is itself an event subset of a larger
event set dedicated to each SDP. For example, a subset of events generated by
a UPnP parser is successfully understood by an SLP composer whereas specific
UPnP events, due to UPnP functionalities that SLP does not provide, are sim-
ply discarded from the SLP composer, as they are unknown. Event streams are
totally hidden from components as they are reconstructed through composers
(step7 in Figure 5). Monitor component and local application components are
therefore virtually connected through a connector, which acts as a universal
event communication bus. Consequently, interoperability is guaranteed to ex-
isting applications tied to a specific SDP without being altered. Similarly, fu-
ture applications do not need to be developed with a specific middleware API
to get the SDP interoperability property. Furthermore, application components
continue to use their own native service discovery protocol without using the
virtual connector, which is unidirectional. Hence, there is no return path and
the generator needs to instantiate neither a dedicated parser nor a dedicated
composer to translate replies from the native SDP to the discovered SDP. This

Service Discovery Protocol Interoperability in the Mobile Environment 75

makes drastic computation resources economies. Moreover, it is important to
note that our SDP interoperability may be applied to both service provider and
client application. On the former side, requests, which are generated by clients
using protocols other than the service provider’s native SDP, are automatically
detected thanks to the monitor component and transparently translated through
the virtual connector into new semantically equivalent requests but understood
by the service provider. Then, the latter replies, according to its native proto-
col, to the client. The virtual connector acts like a ”SDP translator”. However,
this conversion process is without losses as it is based on the greatest common
denominator of the different SDP functionalities. For example, SLP does not
manage UPnP eventing mechanism [4] and consequently related messages are
simply discarded but this is not a loss as SLP does not support it anyway. On
the client side, the same mechanism occurs : received messages, generated by
services using a different discovery protocol from the one used by the client are
trans-lated to new messages semantically equivalent but syntaxically different
according to the client’s native SDP.

5 Conclusion

Service discovery protocol heterogeneity is a key challenge in the mobile comput-
ing domain. If services are advertised with SDPs different than those supported
by mobile clients, mobile clients are unable to discover their environment and are
consequently isolated. Due to the highly dynamic nature of the mobile network,
available networked resources changed very often. Therefore, this requires a very
efficient mechanism to monitor the mobile environment without generating ad-
ditional resource consumption. In this context, inspection and adaptation func-
tionalities offered by reflective middleware are not adequate to support service
discovery protocol interoperability, as they induce too high resource consump-
tion. This paper has addressed this challenge, providing an efficient solution to
achieving interoperability among heterogeneous service discovery protocols. Our
solution is specifically designed for highly dynamic ad hoc networks, which re-
quires both minimizing resource consumption, and introducing lightweight mech-
anisms that may be adapted easily to any platform. An implementation will soon
be released to validate both its design and efficiency.

Once services are discovered, applications further need to use the same inter-
action protocol to allow unanticipated connections and interactions with them.
In this context, the ReMMoC reflective middleware introduces a quite efficient
solution to interaction protocol interoperability. The plug-in architecture asso-
ciated with reflection features allows mobile devices to adapt dynamically their
interaction protocols (i.e., publish/subscribe, RPC etc.). Furthermore, [15] pro-
poses to use ReMMoC together with WSDL [16] for providing an abstract def-
inition of the remote component’s functionalities. Client applications may then
be developed against this abstract interface without worrying about service im-
plementation’s details. However, the solution discussed in [15] suffers from a
major constraint: service and client must agree on a unique WSDL description.

76 Y.-D. Bromberg and V. Issarny

But, once again, in a dynamic mobile network, the client does not know the
execution context. Therefore, it is not guaranteed to find exactly the expected
service. Client applications have to find the most appropriate service instance
that matches the abstract requested service. In addition, this leads to the dy-
namic composition of services, which must account for mobility constraints and
in particular related resource limitation. This issue is addressed by the WSAMI
middleware [17], which introduces enhanced WSDL specification for mobile ser-
vices and a dedicated middleware to allow a service instance to be automatically
selected and composed upon a user request, according to the services that may be
retrieved in the environment. However, if WSAMI provides interoperability to
Web services in the mobile environment, it is still a SOAP based middleware,
and hence does not deal with interoperability among components using hetero-
geneous interaction protocols. We are currently investigating solutions to this
issue so as to complement our solution to SDP interoperability and thus support
middleware interoperability, as required by today’s mobile environment.

Acknowledgements

This work has received the support at the European Commission through the IST
program, as part of the UBISEC project (http://www.ubisec.org). The authors
would like to thank Paul Grace for providing us with detail about ReMMoc.
They are further grateful to anonymous reviewers for useful comments.

References

1. Grace, P., Blair, G., Samuel, S.: Middleware awarness in mobile computing. In:
Proceedings of the 1st international ICDCS Workshop on Mobile Computing Mid-
dleware. (2003)

2. Sun: Jini architectural overview (1999) Technical White Paper.
3. Bettstetter, C., Renner, C.: A comparison of service discovery protocols and im-

plementation of the service location protocol. In: Proceedings of the 6th EUNICE
Open European Summer School: Innovative Internet Applications. (2000)

4. Universal Plug and Play Forum: Universal plug and play device architecture (2000)
5. Salutation Consortium: Salutation architecture (1998) White paper.
6. Ryan, N., Wolf, A.: Using event-based parsing to support dynamic protocol evolu-

tion. In: Proceedings of the 26th International Conference on Software Engineering
(ICSE’04). (2004)

7. Mascolo, C., Capra, L., Emmerich, W.: Middleware for mobile computing (a sur-
vey) (2002)

8. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley (1998)

9. Coulson, G., Blair, G., Clarke, M., Parlavantzas, N.: The design of a configurable
and reconfigurable middleware platform. Distributed Computing (2002)

10. Capra, L., Blair, G., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflection
in mobile computing middleware. ACM Mobile Computing and Communications
Review (2002)

Service Discovery Protocol Interoperability in the Mobile Environment 77

11. Fu, X., Shi, W., Akkerman, A., Karamceti, V.: Cans: composable, adaptive network
services infrastructure. In: Proceedings of the USENIX Symposium on Internet
Tecnologies and Systems (USITS). (2001)

12. Issarny, V., Tartanoglu, F., Liu, J., Sailhan, F.: Software architecture for mobile
distributed computing. In: Proceedings of the 4th Working IEEE/IFIP Conference
on Software Architec-ture (WICSA). (2004) Oslo.

13. Garlan, D.: Formal modeling and analysis of software architecture: Components,
connectors, and events. In: Third International School on Formal Methods for the
Design of Computer, Communication and Software Systems. (2003)

14. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engeneering and Methodology (1997)

15. Grace, P., Blair, G., Samuel, S.: A marriage of web services and reflective mid-
dleware to solve the problem of mobile client interoperability. In: Proceedings of
Workshop on Middleware Interoperability of Enterprise Applications. (2003)

16. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C. 1.1 edn. (2001)

17. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N.,
Taloma, A.: Developing ambient intelligence systems: A solution based on web
services. Journal of Automated Software Engineering (2004) To appear.

Formally Designing an Event-Based Application
for Mobile Collaboration: A Case Study�

Pascal Fenkam and Mehdi Jazayeri

Technical University of Vienna, Distributed Systems Group,
A-1040 Vienna, Argentinierstrasse 8/184-1

{p.fenkam, m.jazayeri}@infosys.tuwien.ac.at

Abstract. The event-based style is recognized as a powerful paradigm
for the construction of large-scale and complex distributed systems. The
development of applications based on this concept is, however, currently
ad hoc and informal. To remedy this situation, we have developed the
Lecap methodology. This paper presents a case study of the applica-
tion of the methodology to the analysis of a platform for mobile team
collaboration. This case study shows that Lecap is indeed applicable
to real-life examples. Further, we claim that a component developed for
one architectural style is not necessarily deployable in the context of an-
other style. Finally, we show where tool support is needed to enhance
the methodology’s usability.

1 Introduction

Despite the acceptance of the event-based (EB) architectural style as an inte-
gration mechanism for CBSE [1] and a communication mechanism for loosely
coupled environments [3, 4, 5] the development of applications based on this
paradigm remains an ad hoc and informal process. Consequently, as EB sys-
tems proliferate, including in safety-critical domains, it remains difficult to rea-
son about the correctness and reliability of such systems. We have attempted
to apply well established software construction principles to the design of an
EB peer-to-peer platform for mobile collaboration called MOTION (MObile
Teamwork Infrastructure for Organizations Networking). The main components
of this platform were formally specified, the specification validated against the in-
formal requirements, and the implementation of the components tested against
the specification [6]. These components proved to be robust in a client-server
based prototype. Surprisingly, however, their integration into an EB peer-to-
peer environment revealed some severe unexpected and undesired behavior. This
experience motivated us to develop Lecap (Logic of Event Consumption and
Publication) [7, 8], a framework for constructing correct EB applications. This

� This work is supported by the Austrian Research Foundation Fond (FWF) through
the RAY project (Number P16970-No4).

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 78–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formally Designing an Event-Based Application for Mobile Collaboration 79

paper presents the first case study in formal stepwise development of EB appli-
cations. We show the redesign of the MOTION’s user management component
to fit the requirements of the EB and the peer-to-peer architectural styles.

In general, while theories show how to carry a task, case studies are the
measure of their practicability. This is one of the contributions of the paper. In
addition, the paper justifies our claim that a component developed for deploy-
ment in the context of one architectural style (in our case client/server) does not
necessarily behave well in the context of another architectural style (event-based
and peer-to-peer). Finally, the paper identifies where tool support is needed to
enhance the methodology’s usability.

The remainder of the paper is organized as follows. The next section gives
an overview of the Lecap framework. Section 3 presents an overview of the
MOTION platform while Section 4 proposes a formal specification of the MO-
TION’s user management system. Section 5 shows how to discharge local proper-
ties of components based on their specifications that are composed in Section 6.
Global properties of applications are discharged in Section 7. Section 8 discusses
our experience and Section 9 concludes the paper.

2 An Overview of LECAP

Lecap is a framework for the construction of correct EB applications which
includes a core programming language (a while-parallel language extended with
an event announcement construct), techniques for the specification of EB ap-
plications, rules for the top-down development of components, and rules for the
composition of specifications. Due to the lack of space, readers interested in a
comparison of Lecap with other approaches are directed to [7, 8, 2].

Lecap distinguishes the following steps in the development process:

1. Designing the architecture of the desired application,
2. Developing the formal specifications of the components,
3. Verifying local properties of these components,
4. Composing the specification of the whole application starting with the spec-

ifications of the components,
5. Discharging the composition proof obligations,
6. Verifying the global properties of the application,
7. Refining the component specifications to implementations,
8. Integrating the components by means of an integration framework.

Applied to our case-study, the first step concerns the MOTION architecture
which is overviewed in Section 3. The second step is tackled in Section 4 while
the steps 3 to 6 are discussed in Sections 5 to 7.

3 Overview of MOTION

MOTION is a platform we designed and prototyped in the MOTION project
[12] where the needs of two well known organizations were addressed. The plat-
form has a service architecture supporting mobile teamworking by taking into

80 P. Fenkam and M. Jazayeri

account different connectivity modes of users, providing access support for vari-
ous devices, supporting distributed search of users and artifacts, offering effective
user management facilities.

The MOTION platform was constructed by assembling different compo-
nents including a user management and access control component, an XQL en-
gine, a repository, an artifact manager, etc. These components are integrated into
the platform by means of the EB architectural style implemented by PeerWare
[10] (see Figure 1).

Communication Middleware

User
Management

Event Based system

DUMAS

Community
Management

Team Work Services
Busness Specific Services

Presentation Layer

TWS API

TWS Layer

Control
Access Repository Messaging

 Publish/
Subscribe Search

Artifact
Managment

Distributed

Peer−to−Peer File Sharing

Fig. 1. The MOTION Architecture

The MOTION platform is based on a peer-to-peer (p2p) architecture, by
which we mean that each device may host and manage a service independently
of the behavior of other devices. The justification of this architecture can be
found in [12]. This paper focuses on user management in a p2p environment.

4 Component Specification

The user management functionality has gained increasing attention and impor-
tance in distributed environments and is provided in the MOTION platform
by DUMAS (Dynamic User Management and Access control System).

The MOTION platform supports various kinds of devices (see Figure 2) that
have different capabilities and that cannot, therefore, be equally used for storing
data such as user profiles and access control data. To support this heterogeneity
of devices we give the end-users the possibility to specify which profiles they
would like to store on their devices. For instance, an end-user, say Jane, may
configure her system such that only profiles of her nearest colleagues are stored
on her PDA. In terms of services, we may say that each device hosts a user
management service. Although the implementation of this service may be the
same for all peers, the content of the repository is not the same; Jane’s profile
may be stored on peer A but not on B. One of the main challenges in such an
architecture is to keep the profiles of all users consistent. Any change to Jane’s
profile on one peer needs to be taken into consideration on (perhaps propagated
to) other peers.

Formally Designing an Event-Based Application for Mobile Collaboration 81

Fig. 2. The Conceptual View of MOTION

Although this may resemble the traditional data-consistency requirement in
distributed systems we suspect that there are more difficulties in this case. First,
a peer may suddenly decide not to be interested in Jane’s profile anymore (de-
pending on the interest of the owner of the peer). Next, the user management
service on one peer has no knowledge about peers interested in events it an-
nounces. Third, each peer stores only profiles it is subscribed to. Finally, a peer
interested in Jane’s profile may be offline when some changes are made to this
profile.

We use a notation that resembles the VDM-SL [11] notation for specifying the
user management facility of MOTION. We lack place to present this notation.

4.1 Data Modeling

We present the datatypes defined in our specification and useful for understand-
ing this paper. Access control models are based on three notions: principals,
subjects, and access rights. A principal is anything capable of possessing access
rights. In our model, we identify two types of principals: users and groups. Each
user/group has an identifier of a not further defined type (declared with token).

ID = token;
UserID = ID ;
GroupID = 〈default〉 | ID ;
RightID = ID ;
PrincipalID = UserID | GroupID ;

A subject is anything (other than an access right or a principal) on which an
access right may be owned (e.g. files). The only requirement on these elements
is to have an identifier. Subjects are not registered in the repository (defined
below); we have no control over when they are created and destroyed.

SubjectID = token;
Profile = token;

82 P. Fenkam and M. Jazayeri

A profile is a set of user-specific information such as her expertise, her lan-
guages, her time-zone, etc. Such profiles may have complex structures that we
do not want to specify at this level of abstraction.

A user is modeled with a set of data related to it: its parents, its access rights,
its identifier, and its profile.

User ::
parents : GroupID-set
mainparent : GroupID
permissions : (RightID × SubjectID)-set
name : UserID
profile : Profile

inv us �
us.mainparent ∈ us.parents;

A principal is either a group or a user. The definition of the datatype Group
is not given in this paper.

Principal = Group | User ;

We introduce the enumeration type Prog for referring to operations defined
in this specification and that are elements of the event-based system’s set of
methods. We assume a system with a finite number of peers; each operation
operationi corresponds to the operation operation running on peer i .

Prog = 〈impl-ebsimpleMu1〉 | · · · | 〈impl-ebsimpleMun〉 | 〈mskip〉;

Next, we introduce a type EventName for classifying events. The only event
name needed in the extract presented in this paper is 〈UserProfileUpdate〉.

EventName = 〈UserProfileUpdate〉;

An event is a composite type including the identifier of the announcing peer,
a tag for identifying the performed state changes, and a payload. On the other
hand, a subscription represents the set of events a peer is interested in.

Event ::
peerid : N

action : EventName
payload : Subject ;

Subscription = Event-set;

A binding associates each program (element of type Prog) to a subscription,
i.e. the set of events the program is subscribed to.

Binding = Prog m-→ Subscription;

A repository is a map of subjects to their identifiers. The first invariant
requires any element to be indeed mapped to its identifier. The second and third
invariants require that the invariants of any user/group be satisfied. Five other
invariants are omitted.

Formally Designing an Event-Based Application for Mobile Collaboration 83

DB = SubjectID m←→ Subject

inv db �
let

inv0 = ∀ x ∈ dom db · x = db(x).name,
inv1 = ∀ x ∈ rng db · is-User (x) ⇒ inv-User (x),
inv2 = ∀ x ∈ rng db · is-Group (x) ⇒ inv-Group (x) in

inv0 ∧ inv1 ∧ inv2

As devices may cache only parts of the whole set of information available
in the system, each peer hosts a local repository. The state of the MOTION
platform is, thus, composed of the sequence of peer repositories.

state System of
db : DB∗,
B : Binding

inv mk-System (db, binding) �
∀ i ∈ [1, len db] · inv-DB(db[i])

init sys �
∀ i ∈ [1, len db] · dbi = {�→}

end

The invariant of each peer is required to hold. The binding is currently empty
as we do not know yet which program must be subscribed to which events.

4.2 Specification of Components

A number of operations are specified in our model. As an example, we discuss
the operation for updating user profiles: the profile of the given user is replaced
with the provided profile. Each operation is indexed with the identifier of the
peer on which it is running. We, therefore, have a number of lendb such oper-
ations in the system. Each of them only accesses the repository with the same
index.

ebsimpleMui(e : Event) �
await true do simpleMui(e.body .name, e.body .profile) od

The specification is that of an operation that receives an event, extracts
the identifier and the profile of the user that it wraps and submits them to an
operation satisfying simpleMui (Mu is used in analogy to the VDM operation μ
for updating composite types) which is to be executed atomically.

On the other hand, simpleMui is the specification of an operation, say
impl -simpleMui that is the basis for updating user profiles. The post-condition
ensures that after execution, the local repository maps the given user identifier
to a user with the given profile while any other information in the repository is
unchanged. In addition, this method prepares the event to be announced through
the announce construct of muProfilei .

84 P. Fenkam and M. Jazayeri

simpleMui(id : UserID, pr : Profile) �
wr db
pre id ∈ dom dbi

post dbi(id) = μ (dbi (id), profile �→ pr) ∧ dbi −� {id} =
↼−
dbi −� {id}∧

v .peerid = i ∧ v .action = 〈UserProfileUpdate〉 ∧ v .payload = dbi(id) ∧
∀t ∈ [1, len db] · t �= i ⇒ dbt =

↼−
dbt .

While operations satisfying ebsimpleMui are intended to be invoked by the
EB infrastructure (it takes an event as input and announces no event), we provide
the following operation to be used by end-users.

muProfilei(id : UserID, prof : Profile) �
await true do simpleMui(id , prof) od;announce(v1)

Finally, the end-users are given the operation impl -userSubscribe satisfying
userSubscribe for defining the kind of information they would like to store on
their peers.

userSubscriptioni(s : Subscription) �
pre ∀e ∈ s · e.peerid �= i ∧ e.action = 〈UserProfileUpdate〉
post B =

↼−B † {impl-ebsimpleMui �→ s ∪ ↼−B (impl-ebsimpleMui)}
An operation impl -userUnsubscribe satisfying userUnsubscribe is also pro-

vided for unsubscribing. To avoid inconsistencies between the current peer and
the remainder of the system, entries of the repository that match this subscrip-
tion are also deleted.

userUnsubscribe(e : Event) �
wr dbi

post let
m = 〈impl-ebsimpleMui〉
X = {u ∈ rng dbi | ∃ e ∈ s · e.payload = u}

in dbi −� {e.body .name} =
↼−
dbi −� {e.body .name}∧

B =
↼−B † {m �→ ↼−B (m) \ {s}} ∧ rng dbi ∩ X = ∅

5 Local Property Verification

The local property of interest is that any operation that satisfies one of the
above specifications conserves the invariants of the repository. Considering that
the binding is empty and that interference freedom is achived through the await
construct, we deduce the following behavioral specification:

behavioral-muProfilei(id : UserID, prof : Profile) � simpleMui(id , prof)

Formally Designing an Event-Based Application for Mobile Collaboration 85

The proof obligation (PO) is subsequently formulated as:

Proof Obligation 1 ∀ u : UserID , p : Profile · post-simpleMui(u, p) ⇒ inv-DB

This PO is discharged by natural deduction along the following steps:

– Strengthening the pre-condition of simpleMui with the assumption that the
initial state satisfies the invariant of the repository,

– Applying the pre-rule to add this information into the post-condition,
– Observing that:

• for any entry x in the domain of dbi , the invariant of dbi(x) is satisfied
and

• for any x in the domain of dbi , dbi(x).name = x .

The second PO is that impl -ebsimpleMui also conserves the invariant of the
local repository and is discharged in the similar way.

6 Application Composition

The composition of specifications is done by subscribing specification of compo-
nents to events in a way that reflects the architecture of the desired application.

6.1 Subscription of Components

The verification of the properties of this application is performed under some
assumptions such as that of requiring subscriptions submitted by end-users to
exclude events announced by the current peer (in this case the peer i).

If the owner of the peer i is interested in caching profiles satisfying the sub-
scription s and the pre-condition pre-userSubscriptioni , she uses the operation
userSubscribe to transform the binding into:

B =
↼−B † {impl-ebsimpleMui �→ s ∪ ↼−B (impl-ebsimpleMui)}

Clearly, this binding requires the EB infrastructure to invoke the operation
impl -ebsimpleMui when an event matches the subscription s.

6.2 Identification of Affected Components

The next step in the composition of an EB application is the identification of
components whose behaviors may be affected by a subscription. Since the op-
erations impl -ebsimpleMui announce no event, subscribing them to an event
e only impacts their predecessors; by which we mean operations such that
impl -ebsimpleMui is invoked in some of their computations.

Starting with the empty binding, we subscribe impl -ebsimpleMui to an event
e where e.name = 〈UserProfileUpdate〉 and e.peerid �= i (as required by the pre-
condition of userSubscriptioni). The identifier e.peerid of the subscribing peer
may take any value different from i . The set of announcers of the event e is,
therefore:

86 P. Fenkam and M. Jazayeri

announcers(e) = {impl-muProfilej · j �= i}

resulting in:

predecessors(impl-ebsimpleMui) = {impl-muProfilej · j �= i}.

In general, predecessor(z) defines the set of programs such that the program
z is triggered in some of their computations. It, therefore, depends upon the
binding.

6.3 Derivation of Behavioral Specifications

We proceed to deriving the behavioral specifications of affected components. This
process which is accompanied by the derivation and the discharge of composition
proof obligations results in specifications that are used for the verification of
global properties of the application.

The requirement is to derive the behavioral specification of each z in
predecessors(impl -ebsimpleMui). Since, however, each operation z in
predecessors(impl -ebsimpleMui) satisfies a specification of the form muProfilej
(where j �= i), it is enough to take an arbitrary impl -muProfilej and derive its
behavioral specification.

Applying the announce rule and assuming that the binding is that obtained
above, we derive:

∀e ∈ events(impl-muProfilej) · subscribers(e) = {impl-ebsimpleMui ,mskip}

and the behavioral specification of impl -muProfilej is therefore:

muProfilei(id : UserID, prof : Profile) �
await true do simpleMuj (id , prof) od; impl-ebsimpleMui(v)

The PO for the correct behavior of this operation is given by the sequential
rule:

Proof Obligation 2 post-simpleMuj (id , pr) ⇒ pre-ebsimpleMui(v)

This PO is discharged straightforwardly after strengthening the pre-condition
of impl -muProfilej with pre-simpleMui .

7 Global System Behavior

Based on the behavioral specifications computed in the previous section, we
proceed to checking the behavior of the whole application.

7.1 Property I: Consistency

Scalability can be a serious problem in a p2p application. Among others, one
of the obstacles to achieving this scalability in the MOTION platform is the
requirement of replica consistency. We analyze our application with respect to

Formally Designing an Event-Based Application for Mobile Collaboration 87

this property. For any user identifier id and any two peers p and q such that
x ∈ dom dbp ∩ dom dbq it must be true that dbp(x).profile = dbj (x).profile.
Formally, the requirement is formulated as:

Proof Obligation 3
∀ p, q ∈ [1, len db], x ∈ dom dbp ∩ dom dbq · dbp(x).profile = dbj (x).profile.

PO3 is an invariant that must also be ensured before execution of operations,
which means that the pre-conditions of methods must be strengthened with this
assertion resulting in:

muProfilej(id : UserID,pr : Profile) �
pre pre-simpleMui ∧ pre-simpleMuj ∧ C1

post post-simpleMui | post-simpleMuj

Despite this refinement, any attempt to discharge C1 fails. To see why, let us
assume that the peers 124 and 125 have each an entry corresponding to the user
identifier id in their respective local repositories. We also assume that the peer
124 is subscribed to updates concerning the user id while the peer 125 is not. If
a peer 123 now updates the profile of the user id (and subsequently announces
an event), the peer 124 will receive the event while the peer 125 will not, leading
to an inconsistency between the peers 124 and 125. To avoid such situations, we
need to add an invariant to the repositories. We require that if there is an entry
with identifier id in the local repository dbi of peer i , then, this peer must be
subscribed to updates related to this identifier. The invariant is formulated as:

inv4
def
= ∀ i ∈ [1, len db], id : UserID , e : Event ·

(id ∈ dom dbi ∧ id = e.payload .name) ⇒ e ∈ B1(〈ebsimpleMui〉)

We further strengthen the pre-condition of the above specification resulting in
the following specification that is used for discharging PO3 by natural deduction.

muProfilej(id : UserID, pr : Profile) �
wr db
pre pre-simpleMui ∧ pre-simpleMuj ∧ C1 ∧ inv-System

post post-simpleMui | post-simpleMuj ∧ ↼−−−−−−−−−−
pre-muProfilej

The property has been shown for the case where impl -ebsimpleMui is the only
operation interested in events named 〈UserProfileUpdate〉. In this case, there is
no concurrency. Let us now assume that another operation impl -ebsimpleMuk
is subscribed to these events, resulting into concurrency. The binding is now
defined as:

B2 ={ impl-ebsimpleMui �→{x : Event · x .action =〈UserProfileUpdate〉∧x .peerid �= i}},
impl-ebsimpleMuj �→ {},
impl-ebsimpleMuk �→{x : Event · x .action =〈UserProfileUpdate〉∧x .peerid �=k},
mskip �→ {x : Event}}

which results into the following definition of subscribers:

88 P. Fenkam and M. Jazayeri

∀e : Event ·
e.action = 〈UserProfileUpdate〉 ∧ e.peerid = i ⇒

subscribers(e) = {impl-ebsimpleMuk ,mskip}
e.action = 〈UserProfileUpdate〉 ∧ e.peerid = k ⇒

subscribers(e) = {impl-ebsimpleMui ,mskip}
e.action = 〈UserProfileUpdate〉 ∧ e.peerid �∈ [i , k] ⇒

subscribers(e) = {impl-ebsimpleMuk , impl-ebsimpleMui ,mskip}
Since, however, any event announced by muProfilej is such that e.peerid =

j �∈ [i , k], the following specification is derived by application of the announce
rule followed by the skip rule.

behavioral-muProfilej(id : UserID, prof : Profile) �
await true do simpleMuj (id , prof) od; {ebsimpleMui(v)‖ebsimpleMuk (v)}

The proof by natural deduction is constructed by finding Ai and Ak such
that the following holds.

– Ai | post-ebsimpleMuk (v) ⇒ Ai ,
– Ak | post-ebsimpleMui(v) ⇒ Ak ,
– post-ebsimpleMui(v) ⇒ Ai ,
– post-ebsimpleMuk (v) ⇒ Ak ,
– post-ebsimpleMuj (v) | (Ai ∧ Ak) ⇒ C1.

7.2 Property II: Non-volatility of User Data

Although end-users are allowed to specify the kind of data they would like to
store on their devices, an organization may choose to configure one fixed peer
say i , to store all user data. In such a configuration, we must show that the peer
i always has the current version of any user profile in the system. This PO is
formulated as:

Proof Obligation 4 [C2]
∀t ∈ [1, len db], x : UserID · dbi(x).profile = dbt(x).profile

This is a global invariant of the platform that must hold after the execution
of each impl -muProfilej . The proof is by distinguishing two cases:

– x �= id ; in this case, the entry dbt(x) is kept unchanged for any t and from
the validity of C2 in the initial state, one derives that dbi(x) = dbt(x) holds.

– x = id ; the validity of C1 after the execution of impl -muProfilej is applied to
infer that dbi(x).profile = dbt(x).profile for any peer t such that x ∈ dom dbt .

8 Discussion

The properties C1 and C2 about the MOTION platform presented in this paper
are examples of those requirements that could not be checked in the original
formal design that were oriented towards client/server applications. And, in fact,
they were not required. Discharging the related proof obligations was possible

Formally Designing an Event-Based Application for Mobile Collaboration 89

only after some changes to the specification of our components. For instance, the
mutual exclusion construct was inserted in the specification of impl -muProfilej
that was not part of our original specification. As another example, discharging
C1 required the formulation of the invariant inv4.

The analysis of the MOTION platform in the Lecap framework is, thus, a
successful exercise in that it allows discovering and correcting design flaws of the
original proposal. In addition, this shows that the Lecap is indeed applicable to
non-trivial case studies. In fact, we claim that the MOTION case study is a com-
plex case study in that components can be subscribed and unsubscribed dynam-
ically. We have intentionally chosen such a case study to exercise our approach.

Tool support is important for the acceptance of a formal technique. Ideally,
such tools must be oriented towards automating the software engineering process.
We have experienced this necessity in the MOTION case study and believe that
many steps of Lecap can be efficiently supported by CASE tools. Such tools may
be built by combining PO generators with automatic analyzers (e.g. Alloy[9]) or
model checker.

On the other hand, this analysis was only possible with the use of an abstract
mutual exclusion construct that helps in controlling interference. A construct
with the required semantics does not yet exist in practice. We are working on a
prototype implementation for the Siena middleware.

9 Conclusions

Formally designing the user manager of the MOTION platform in the context
of the EB style was an intriguing exercise. The specification presented in this
paper is part of a larger effort in establishing a methodology for the construction
of reliable event-based applications.

In general, we found that the Lecap methodology is indeed applicable to
non-trivial real-life cases. The redesigning the MOTION system revealed a sig-
nificant number of design shortcomings that could not be detected before. An ex-
ample of such shortcomings is that the invariant inv4 presented in Section 7 was
not specified before (see [6]), and hence, the consistency PO could not be proven.

The component that we specified in this case study was already specified,
validated, and verified in another context were its robustness could be achieved.
Its misbehavior in the context of the event-based paradigm suggests that the
assumed architectural style must be part of the description of a component. A
component designed, validated, and verified in the context of the client/server
style, for instance, does not necessarily behave well in the peer-to-peer or event-
based styles.

The Lecap methodology is still experimental. As such, many areas of im-
provement are possible, both in the methodology and in its applicability. In the
first place, the VDM notation used in this paper is still experimental. A more
usable notation must be investigated.

In this paper we have reported the results of a case study in applying the
Lecap methodology in the redesign of a component of the MOTION platform.

90 P. Fenkam and M. Jazayeri

We have shown how reasoning and validation about properties of the system can
be carried out both about local properties and global properties. Although our
experience is promising, the case study also identified some deficiencies that
point the way to needed future work.

References

1. D. J. Barret, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework for event based
software integration. ACM Transactions on Software Engineering and Methodology,
5(4):378–421, 1996.

2. Jeremy S. Bradbury and Juergen Dingel. Evaluating and improving the automatic
analysis of implicit invocation systems. In Proceedings of the 9th European soft-
ware engineering conference held jointly with 10th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 78–87. ACM Press, 2003.

3. Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design and evalua-
tion of a support service for mobile, wireless publish/subscribe applications. IEEE
Transactions on Software Engineering, 29(12):1059–1071, December 2003.

4. Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexander L.
Wolf. Issues in supporting event-based architectural styles. In Proceedings of 3rd
International Software Architecture Workshop, Orlando FL, USA, pages 17–20,
November 1998.

5. Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. Exploiting an event-
based infrastructure to develop complex distributed systems. In Proceedings of the
20th International Conference on Software Engineering (ICSE 98), pages 261–270,
1998.

6. Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Constructing CORBA Sup-
ported Oracles: A Case Study in Automated Software Testing. In Proceedings of
the 17th IEEE Automated Software Engineering Conference, Edinburgh, Scotland,
pages 129–138, September 2002.

7. Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. A Systematic Approach to
the Development of Event-Based Applications. In Proceedings of the 22nd IEEE
Symposium on Reliable Distributed Systems (SRDS 2003), Florence, Italy. IEEE
Computer Press, October 2003.

8. Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Constructing Deadlock Free
Event-Based Applications: A Rely/Guarantee Approach. In Proceedings of FM
2003: the 12th International FME Symposium, Pisa, Italy, LNCS, pages 632–657.
Springer Verlag, September 2003.

9. Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering Methododlogy, 11(2):256–290, April 2002.

10. Gian Pietro Picco and Gianpaolo Cugola. PeerWare: Core Middleware Support for
Peer-To-Peer and Mobile Systems. Technical report, Dipartimento di Electronica
e Informazione, Politecnico di Milano, 2001.

11. Nico Plat and Peter Gorm Larsen. An Overview of the ISO/VDM-SL Standard.
In ACM SIGPLAN Notices, pages 76–82. ACM SIGPLAN, September 1992.

12. Gerald Reif, Engin Kirda, Harald Gall, Gian Pietro Picco, Gianpaola Cugola, and
Pascal Fenkam. A web-based peer-to-peer architecture for collaborative nomadic
working. In 10th IEEE Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), Boston, MA, USA, pages 334–339. IEEE
Computer Society Press, June 2001.

Supporting Generalized Context Interactions

Gregory Hackmann1, Christine Julien2, Jamie Payton1, and
Gruia-Catalin Roman1

1 Department of Computer Science and Engineering,
Washington University in St. Louis

{ghackmann, payton, roman}@wustl.edu
2 Department of Electrical and Computer Engineering,

The University of Texas at Austin
c.julien@mail.utexas.edu

Abstract. In context-aware computing, applications’ behavior is driven
by a continually-changing environment. Mobile computing poses unique
challenges to context-sensitive applications and middleware, including
the ability to run on resource-poor devices like PDAs and the necessity
to limit assumptions about the network. Though middlewares exist to
provide context-awareness to applications, they do not address the limi-
tations inherent in dynamic mobile environments. This paper discusses a
lightweight approach to context-sensitivity that takes into account these
considerations. We explore the use of modularization to tailor service dis-
covery policies for applications, as well as leveraging existing language
constructs to simplify creation and aggregation of different context types.
We also discuss an implementation of these concepts, along with three
sample applications that can automatically propagate changes in context
to clients running on devices from mobile phones to desktop computers.

1 Introduction

Traditionally, context-aware computing refers to an application’s ability to adapt
to its environment. Calendar or reminder programs [1] use time to display per-
tinent notifications to users. Tour guide applications [2, 3] display information
based on the user’s current physical location. Still other programs implicitly at-
tach context information to data, e.g., to research notes taken in the field [4].
Each of these applications independently gathers context information from the
required sensors and tailors the provision of context.

With the increasing popularity of communicating mobile devices, context-
aware computing has moved from a target environment of an autonomous device
to a sophisticated network of connected devices, all providing context informa-
tion to each other. This enables powerful applications that allow complex inter-
actions across a dynamic network of heterogeneous devices. Presenting context
to software engineers, however, has received little attention. Building context-
aware applications like those above has required each developer to independently
construct mechanisms to monitor and collect context information.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 91–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 G. Hackmann et al.

In this paper, we introduce CONSUL, a middleware solution that simplifies
access to context information. By providing abstractions for complex network
transactions, we allow novice programmers to build applications that utilize con-
text information collected from a heterogeneous environment. We significantly
simplify the development task by removing the need to handle the intricate net-
work programming necessary to collect the information and instead present an
accessible yet expressive and extensible interface for using context information.

In the next section, we outline the requirements of a context monitoring
middleware for dynamic mobile environments. Section 3 examines existing solu-
tions. Section 4 details the architecture and implementation of CONSUL, and
Section 5 discusses three sample applications developed with the middleware.
In Section 6, we address relevant issues, including discovery mechanisms, the
separation of discovery and sensing, and higher level concerns associated with
context-gathering. Conclusions appear in Section 7.

2 Problem Definition

Context items are pieces of data sensed about the environment, e.g., location,
temperature, link latency, etc. The environment is open, meaning hosts con-
tributing context information can join or leave the network at any time. We as-
sume a heterogeneous and dynamic environment containing resource-constrained
devices such as environmental sensors, cellphones, PDAs, and laptops.

Programming the collection and monitoring of dynamic contexts can be bur-
densome. A programmer must identify the desired source, contact the provider,
collect the context items, and interpret them. Typically, the developer must use
network programming mechanisms that require knowing the identity and loca-
tion of the provider. In open and dynamic environments, it is often infeasible
to rely on such a priori knowledge. Mobility compounds the problem since the
movement of context providers requires management of network disconnections.
In addition, given the wide array of devices available and the multitude of appli-
cations that run on them, the collected pieces of context are likely to be in diverse
formats that require unification. Finally, the set of available context items is not
static; applications continuously inject context items into the environment.

We aim to simplify application development by reducing the complexity of
handling context collection and monitoring in dynamic environments. We achieve
this goal through a middleware that hides the details of these tasks. The following
are requirements of such a middleware infrastructure.

– Decoupled communication. We must assume no advance knowledge of
communication partners.

– Transparent monitoring of context. Issues associated with distribution,
mobility, and unpredictable connectivity should be hidden. Moreover, the
process of determining how context changes are presented should be rele-
gated to the infrastructure.

– Generalized treatment of context. Context should be generalized so
applications interact with different types of information in a similar manner.

Supporting Generalized Context Interactions 93

– Extensibility. Given the openness of the environment, the infrastructure
should adapt to the inclusion of new context users and providers with little
or no intervention from a system administrator.

– Scalability. To scale to large networks, a decentralized solution is necessary.
– Accommodate small devices. The middleware primitives must have a

lightweight implementation to account for resource-constrained participants.

In the remainder of the paper, we examine how current solutions fall short
of meeting these requirements and propose a new middleware infrastructure
designed to facilitate rapid development of context-aware applications.

3 Related Work

In this section, we review examples of systems which support context-aware
application development. We focus on three well-known systems: Stick-e Notes,
CALAIS, and the Context Toolkit. For brevity, other context-aware systems such
as CoolTown [5], Gaia [6], and Confab [7] are not discussed.

3.1 Stick-e Notes

Stick-e Notes [8, 9] favors ease-of-use and serves as a precursor for many context-
sensitive middlewares. In Stick-e Notes, virtual notes are attached to physical
phenomena like times, places, and events. The decision of when a note is in
context is included within the note itself; the SGML structure of each note
includes a section to semantically describe when it is to be triggered. Exactly
what it means to trigger a note is left to the discretion of the client application.

This model is unique in that end-users need only basic SGML knowledge to
create notes. However, significant trade-offs are made for the sake of ease-of-
use. First, context is determined by the note and not the client, which limits
flexibility. For example, a note may be triggered when the user enters a range
of locations, but it is not possible for a user traveling in a car to trigger notes
within a greater range of distances than a user on foot. In addition, the model
provides no way to disseminate notes; the client either have them or be able to
obtain them using some external mechanism. This limits the applicability of this
model to dynamic environments.

3.2 CALAIS

CALAIS [10] offers an alternative for providing location-based context by allow-
ing applications to register with sensors to receive notifications of state changes.
Location is stored in a central database, which tracks physical objects (like Ac-
tive Badges [11]) and uses spatial algorithms to determine which room contains
these objects. This location information is automatically delivered to registrants.
A simple language allows contexts to be aggregated into more-complex contexts.
The use of callbacks and context aggregation addresses the most serious short-
comings of Stick-e Notes by allowing clients to determine context from a number
of sources, which automatically notify the client of any state change.

94 G. Hackmann et al.

CALAIS relies extensively on CORBA, which is too heavyweight for practical
use on many mobile devices. Additionally, it is geared for a specific type of
contextual information. Finally, the design of the location service necessitates a
central server capable of processing complex spatial relationships, which raises
additional performance and scalability issues.

3.3 Context Toolkit

The Context Toolkit [12] provides hooks for automatically discovering context-
providing “widgets”, which can be aggregated within the middleware to form
more complex contexts. Unlike CALAIS, Context Toolkit does not depend on
any specific back-end for communication between devices; by default it uses XML
over HTTP for communication, but this can be swapped out to accommodate
other communication mechanisms.

This model is not without its own shortcomings. First, the Context Toolkit
is large and complex, which limits its use on resource constrained devices. This
complexity also hinders the task of creating new widgets [13]. Finally, the move-
ment of context aggregation functionality away from the client and into the mid-
dleware unnecessarily limits the types of aggregations that can be performed.

3.4 Observations

Despite their shortcomings, these systems identify several desirable characteris-
tics of context-sensitive middleware. These characteristics, further refined in [14],
form a list of challenges to meet when writing such a middleware. First, the con-
text providing infrastructure must be independent of platform and programming
language. Second, the system should adapt to changing context resources. More-
over, the system should adapt to changing context information and propagate
these changes to applications. Third, the infrastructure must require minimal
administration to be able to scale to large numbers of devices. Fourth, context
should be treated universally to promote code reuse. Finally, to allow incorpora-
tion of resource-constrained devices, the middleware must remain lightweight.

4 A Middleware for Environmental Monitoring

Existing solutions fall short of meeting application needs, specifically on resource-
constrained devices in highly dynamic networks. To address these concerns, we
developed CONSUL (CONtext Sensing User Library), which provides applica-
tion developers access to context information through a simplified interface. This
eases programming and places the ability to build context-aware applications in
the hands of novice programmers. Figure 1 shows CONSUL’s architecture. In the
figure, the solid gray components define CONSUL. The white components we as-
sume to exist, and the cross-hatched component is what an application developer
provides. In this section, we discuss the implementation of these components and
show how developers use CONSUL to build context-aware applications.

Supporting Generalized Context Interactions 95

Sensor Monitoring

Discovery Message Sensing

Physical Network

Application

Fig. 1. The architecture of an application using CONSUL

4.1 Foundational Components

In building CONSUL, we assumed the existence of several components. First,
CONSUL builds on a physical network which includes the physical hosts and
the connections (wired or wireless) that allow the hosts to communicate. On top
of this, our middleware also relies on an existing message passing mechanism.
The final component that we assume to exist is a network discovery mechanism.
For the remainder of this paper, unless otherwise explicitly specified, we rely
on the simplest discovery mechanism: one that informs a host of all one-hop
neighbors, i.e., other hosts in direct communication. We intentionally separate
discovery from sensing to allow each application to select its own discovery mech-
anism. We further examine this choice and its separation from context sensing
in Section 6.1.

4.2 CONSUL

As shown in Figure 1, two components contribute to providing the environmen-
tal monitoring functionality: the sensing component and the sensor monitoring
component. Figure 2 shows the internal class diagrams for these two components
and how they interact with each other and the application.

Sensing. The sensing component allows software to interface with sensing de-
vices connected to a host. Each device has a corresponding piece of software (a
monitor). In CONSUL, each monitor extends an AbstractMonitor base class
and contains its current value in a variable (e.g., the value of a location monitor
might be represented by a variable of type Location). An application can react to
changes in monitor values by implementing the MonitorListener interface and
registering itself with the monitor. To ensure that any listeners registered receive
changes, the monitor should perform these changes through the setValue()
method in the base class. Applications can also call the getMonitorValue()
method provided by the base class to obtain these values on demand.

Figure 3 demonstrates an example class that extends AbstractMonitor to
collect GPS information. From CONSUL’s perspective, the important pieces are
how the extending class interacts with the base class. The details of commu-
nicating with a particular GPS device are omitted; their complexity depends
directly on the particular device and its programming interface.

96 G. Hackmann et al.

Sensor Monitoring Sensing

Monitor
Registry

Abstract
Monitor

0..* Monitor
Listener

0..*

Monitor
Value

getM
onitor

addM
onitorListener

m
on

ito
rE

ve
nt

R
ec

ei
ve

d

Im
p

lem
en

ts

getM
onitorV

alue

getR
em

oteM
onitor

Application

Remote
Monitor

Extends

Fig. 2. The internal class diagrams for the components of CONSUL

public class GPSMonitor extends AbstractMonitor{
public GPSMonitor(...){
//call the AbstractMonitor constructor
super("GPSLocation");
//set up serial connection to GPS receiver
...

}
public void serialEvent(SerialPortEvent event){
//handle periodic events from GPS receiver
...
//turn GPS event into a GPSLocation object
...
//set local value variable, notify listeners
setValue(gpsLocation);

}
}

Fig. 3. The GPSMonitor Class

To assist application developers, CONSUL includes several MonitorValues
for programmers to use when building monitors or constructing more complex
MonitorValues. These values reside in a library to which application developers
can add new types. For example, the library contains an IntValue that can be
used for sensors whose state can be represented as a single integer value. There
are also aggregate values, e.g., DateValue, that build on the simple value types.
In addition to being available for developers to use, they also serve as examples
for defining new values. Figure 4 shows a class that extends ArrayValue to
aggregate GPS coordinates (represented by DoubleValues).

Supporting Generalized Context Interactions 97

public class GPSLocation extends ArrayValue {
public GPSLocation(double latitude, double longitude) {
super(new IMonitorValue [] {
new DoubleValue(latitude), new DoubleValue(longitude)

});
});
public double getLatitude() {
return ((DoubleValue)getValues()[0]).getValue();

}
public double getLongitude() {
return ((DoubleValue)getValues()[1]).getValue();

}
}

Fig. 4. The GPSLocation Class

Sensor Monitoring. The sensor monitoring component maintains a registry of
monitors available on the local hosts (local monitors) and on hosts found by the
discovery package (remote monitors). As described above, local monitors make
the services available on a host accessible to applications. To gain access to local
monitors, the application requests them by name (e.g., “Location”) from the
registry, which returns a handle to the local monitor.

To monitor context information on remote hosts, the monitor registry cre-
ates RemoteMonitors that connect to concrete monitors on remote hosts. These
RemoteMonitors serve as proxies to the actual monitors; when the values change
on the monitor on the remote host, the RemoteMonitor’s value is also updated.
To access remote monitors, the application provides the ID of the host (which
can be retrieved from the discovery package) and the name of the monitor to the
registry’s getRemoteMonitor() method. This method creates a proxy, connects
it to the remote monitor, and returns a handle. The application can then interact
with this handle as if it were a local monitor.

5 Example Applications

In this section, we present three applications, and for each show how using
CONSUL extensively simplified the programming task.

5.1 Stock Viewer

In the first application, stock quotes are delivered to handheld devices. Behind
the scenes, servers advertise stock information by acting as monitors. Clients
running on J2ME-enabled devices automatically discover advertised stocks and
display them to users who can select a stock and view its current value. Imple-
menting the stock ticker using CONSUL is straightforward and requires minimal
“from scratch” coding.

Since we do not have access to a J2ME-enabled mobile phone, the screenshots
below are taken from a laptop running the MIDP Emulator from Sun’s J2ME

98 G. Hackmann et al.

Fig. 5. Left: the client stock ticker on a mobile phone emulator, displaying a list of
discovered stock monitors. Right: the client displaying the value of a selected stock

DiscoveryServer discovery = DiscoveryServer.getServer();
discovery.setProxy(true);
discovery.start();
MonitorRegistry registry = new MonitorRegistry(p);

registry.addMonitor(new StockMonitor("MSFT"));
registry.addMonitor(new StockMonitor("YHOO"));
registry.addMonitor(new StockMonitor("T"));

Fig. 6. A Stock Ticker Server

Wireless Toolkit. The emulator uses an 802.11b wireless connection to commu-
nicate with a stock server on a desktop computer. To simulate a low-bandwidth
connection, the emulator caps the network throughput at 9600 bits/second.

A stock’s value consists of its ticker symbol; current, low, and high dollar
values; trading volume; and company name. Creating a custom StockValue
class simply requires aggregating the predefined StringValue, IntValue, and
DoubleValue classes in an ArrayValue.

The stock monitor inherits its ability to automatically notify clients
of changes from the AbstractMonitor base class. The implementation of
StockMonitor requires only a call to AbstractMonitor’s setValue() method
to update its value and propagate the update to clients. As shown in Figure 6,
the server benefits from similar substantial code re-use. The simple code snippet
shown assembles a fully-functioning context server from the CONSUL compo-
nents and the two classes mentioned above. The first three lines start a device-
discovery server. Then, a registry is created on a particular port (p) to allow
remote hosts to query local monitors on port p. The final lines create local mon-
itors for the MSFT, YHOO, and T stock tickers.

The client gains most of its functionality from CONSUL’s discovery server
and monitor registry components. Once the user interface code has been written,

Supporting Generalized Context Interactions 99

adding the stock querying functionality is almost trivial: four lines of code to
begin finding stock servers, six lines to listen to monitors on discovered servers,
and two lines to receive updated stock values. Such extensive code re-use allows
rapid development of context-aware applications, shifting effort away from the
back-end and toward the user interface.

In this application, the use of CONSUL decouples servers from specific clients,
allowing for custom clients that can present stock information in various ways,
e.g., a client that pops up a notification when a stock reaches a certain price.

Since CONSUL is very lightweight, the client can easily be run on resource-
poor devices like mobile phones. The stock viewer application plus all required
libraries consumes only 48 kilobytes. This small size also means that it is feasible
to send the application to devices on-demand over-the-air.

The use of context-aware middleware places one restriction on the devices
used as clients: they need full IP networking support. In this sample application,
the server obtains stock information from a Web service. Web services have one
distinct advantage over full-scale context-aware middleware: the clients only need
basic HTTP networking support. This drawback does not necessarily reflect a
general shortcoming of our middleware, but rather raises the issue of how useful
context-sensitivity is in this scenario; stock information is widely available from
well-known sources on the Internet. Despite our middleware’s small footprint,
from a practical point-of-view it may be overkill for retrieving stock quotes. The
need for context-sensitive middleware is more pressing when the context sources
are not public or must be discovered at runtime.

5.2 RFID-Activated Smart Room

In our second sample application, a server uses an attached RFID scanner to
provide information about current occupants of a room. Information about a
user’s presence is collected by using wearable RFID tags and an RFID scanner
on the door. A separate client stores predefined playlists for each person who
might enter the room. This computer uses the continuously-updated list of people
in the room to play music in the Winamp media player; it selects music from a
“master” playlist made by intersecting the playlists of everyone in the room.

The client in turn serves as a monitor that provides information about the
song currently playing, which can be displayed on a handheld. Another computer
combines the MP3 player’s context with the RFID context information to serve
a Web page with a list of current occupants and the music.

The screenshots below show the application running on a Compaq iPaq and
a desktop, which communicate using 802.11b and wired Ethernet (respectively).
Additional desktops (not shown) run the RFID and playlist server applications.

Unlike the previous example, these contexts are not publicly available on the
Internet nor from well-known sources, so device discovery is essential. We also
expect the playlist to be updated in real time as the room’s occupants change,
i.e., the client requires “push” service, which CONSUL provides; Web services
inherently provide “pull” information.

100 G. Hackmann et al.

Fig. 7. Left: a client running on a PocketPC showing the current song being played.
Right: a Web page showing the current song being played and the people in the room

The code to add context-sensitivity to this application is very similar to the
previous application. Interestingly, the computer running the MP3 player acts
both as a recipient of context information (a list of occupants) and as a provider
(the current song). Once the RFID client was written, extending it to serve
the MP3 player’s contextual information required only a single line of code to
instantiate a WinampMonitor and add it to the MonitorRegistry already in use
to receive context from the RFID server.

Since these context monitors are re-usable components, extending this ap-
plication is straightforward and transparent to the application. For example, a
computer connected to an X10 controller could use the RFID context to auto-
matically turn the lights off when the room is empty.

This application demonstrates that the monitors and values constructed using
CONSUL are re-usable components just as CONSUL itself is. Multiple clients
use the context provided by the RFID monitor and MP3 player monitor for
different purposes, and the Web server drew context from multiple services. The
MonitorRegistry class handles this transparently, so the programmer simply
assembles applications from re-usable components.

Currently, the device discovery mechanism does not allow programmers to
search for specific types of devices. Instead, clients retrieve a list of all the devices
in the room. They must then collect a list of monitors running on the devices and
select one or more monitors based on their names. This requires us to assume
that a monitor’s name reflects its function. For example, the clients interested
in RFID information search for monitors named “RFID”. This problem can
be avoided by replacing the existing device discovery mechanism with a more-
sophisticated discovery method as discussed in Section 6.1.

Supporting Generalized Context Interactions 101

5.3 Ad Hoc Mobile Communication Protocol

The Network Abstractions protocol [15] provides context-sensitive routing in
ad hoc networks by allowing an application to limit its operating context to
a neighborhood within the ad hoc network. The protocol requires monitoring
the values of sensors on the local host and on directly connected hosts in an
ad hoc wireless network. To allow the size and scope of the neighborhood to
be application-specific, each application can specify an abstract metric over ar-
bitrary properties of hosts and links in the network. This metric calculates a
logical distance from the application’s local host to any other host, and includes
a bound on allowable distances that restricts the hosts belonging to the neigh-
borhood. As a simple example, an application might want to communicate with
all hosts within three miles.

An implementation of this protocol can benefit from the use of CONSUL
to access the host and link properties that define metrics. CONSUL relieves the
protocol implementer and user from concerns associated with maintaining a con-
sistent view of the values of the relevant sensors on local and remote hosts. For
example, when the protocol builds a new context that it maintains over time, it
can use the code in Figure 8 to register itself as a listener for the appropriate
monitors. When changes in the monitor values occur, the protocol is automati-
cally notified and can change the structure of the routing paths as needed.

ContextMonitorListener cml = new ContextMonitorListener(...);
AbstractMonitor m = registry.getMonitor("GPSLocation");
m.addMonitorListener(cml);

for(int i=0; i<neighbors.length; i++){
AbstractMonitor m2

= registry.getRemoteMonitor("GPSLocation", neighbors[i]);
m2.addMonitorListener(cml);

}
Fig. 8. A Portion of the Network Abstractions Protocol using CONSUL

The code in the figure explains how, on behalf of a single application, the
protocol uses CONSUL to build a network abstraction based on relative phys-
ical locations. The first line creates an instance of a monitor listener (the
ContextMonitorListener). The protocol then retrieves the local instance of
the GPSMonitor and adds the created listener to the monitor. This allows the
protocol to be notified when the local host’s location changes. Because this ex-
ample metric is based on the physical distance between hosts in the network, the
protocol must also register as a listener for changes in all the one-hop neighbors’
locations. In the second portion of code, for each neighbor (in a list retrieved
from the neighbor discovery component), the application adds its listener to the
remote location monitor on the neighbor. Not shown is the fact that, when new
neighbors are discovered, a listener must be added to their location monitors,

102 G. Hackmann et al.

and when neighbors move away, the listeners must be removed. Additional code
within the listener also handles the reception of monitor events to adjust the
metric values when the locations of the involved hosts change.

5.4 Comparisons and Lessons Learned

These sample applications demonstrate CONSUL’s flexibility. They include com-
ponents running on desktops, PocketPCs, an emulated mobile phone, and a
variety of other mobile devices. This flexibility comes from CONSUL’s small
footprint and the fact that it does not rely on any language-dependent features.
In comparison, CALAIS and Context Toolkit have large footprints and would
very likely not run on smaller devices like PocketPCs or mobile phones.

The applications presented in this section required little programming effort
to transform a stand-alone utility or viewer into a context-aware application
because CONSUL encapsulates the functionality needed to find and propagate
context information across a network. To implement the same applications in
Stick-e Notes would require additional code to propagate context to clients.

The applications demonstrate that CONSUL promotes separation of con-
cerns, modularity, and code reuse. In the smart room application, custom-made
monitors and values were separated into re-usable components. A fairly complex
smart room was built using simple components. This application also shows that
CONSUL promotes the development of extensible context-aware systems.

6 Discussion

In this section, we examine issues that arise in the use of CONSUL. The first
concern deals with the underlying mechanism of network discovery. We then dis-
cuss the importance of the separation of concerns, focusing on the separation of
the two components within CONSUL and on the separation of CONSUL from
network discovery. Another concern mobile computing developers express is the
need to secure their information and devices. We discuss this in the context of
sensor information that components make available. Finally, the CONSUL pack-
age provides a basis for building more sophisticated data interaction mechanisms,
and we examine possibilities for these higher-level concepts.

6.1 Network Discovery

Well-known ad hoc mobile routing protocols generally use the simple network
discovery mechanism assumed in Section 4. In these cases, all members of the
network listen for any of their one-hop neighbors. However, this may cause prob-
lems in some target environments.

For example, conserving energy while discovering useful neighbor sets might
be the driving design motivation. Birthday protocols [16] have been developed for
static ad hoc networks where certain assumptions hold about the relationships
between the devices. These networks are still quite dynamic, however, because
nodes can be deployed and fail at various times, and require constant discovery.

Supporting Generalized Context Interactions 103

Group communication mechanisms for mobile networks [17] can extend a
node’s neighborhood to include nodes to which it is not directly connected.
Such protocols create a list of nodes with which a group member can reliably
communicate. The integration of these group communication protocols with the
CONSUL package allows applications to access sensor services available through-
out the group instead of restricting remote sensing to one-hop neighbors.

Even in this brief overview, it becomes obvious that sophisticated discovery
mechanisms can greatly enhance CONSUL. It is also apparent that the selection
of the discovery mechanism depends heavily on a particular application’s needs
or operating environment. This factor plays heavily to our desire to separate the
discovery mechanism from the CONSUL implementation.

6.2 Separation of Concerns

A key to software engineering is the identification and encapsulation of pieces
of software related to a particular purpose. Software designed in accordance
with the separation of concerns concept is highly modular and promotes code
maintainability, reuse, and evolution. In CONSUL, we seek to provide a flexible
and general middleware for context-aware application development in dynamic
environments. As a result, CONSUL’s architecture is highly modular.

Discovering the set of neighboring hosts that can contribute to an applica-
tion’s context is an important part of collecting context. In CONSUL, we sepa-
rate the network discovery mechanism from the context interaction mechanisms
(i.e., sensing and monitoring components). The discovery component constantly
evaluates a host’s set of neighbors. This neighbor set is used by other compo-
nents in CONSUL to support context interaction. With this separation, we allow
different methods of discovery to be used interchangeably without affecting how
an application interacts with sensors.

In CONSUL, context interaction is further synthesized into components. The
tasks associated with acquiring and reporting data are separated from those
associated with acquiring sensors. The sensing component encapsulates sensing
tasks (i.e., one-time and persistent query handling) within a monitor. The sensor
monitoring component provides the application with a handle to monitors, local
or remote, through the use of a monitor registry. With this separation, we place
the responsibility on the sensor monitoring component for providing access to
the desired monitors. Moreover, we eliminate the need for an application to use
separate interfaces for interacting with local and remote monitors.

6.3 Security Concerns

CONSUL uses no encryption when sending monitor values between hosts. This
avoids burdening resource-constrained devices with storing a large encryption
library and decrypting values on-the-fly. However, monitors could be used to
transmit sensitive data on insecure networks, justifying this burden. For these ap-
plications, an optional EncryptedValue class is included in CONSUL. This class
wraps values with an encryption layer provided by the Bouncy Castle Crypto
library [18]. Monitor programmers can use this class to encrypt values with a

104 G. Hackmann et al.

fixed symmetric key; access to monitor values can be controlled by distributing
this key ahead-of-time to trustworthy clients. Clients without this key can still
receive monitor values, but cannot decrypt them.

Since CONSUL’s values are reusable components, the use of this generic
wrapper adds only one line of code each to the monitor and client. Implementing
more-sophisticated encryption schemes should be just as straightforward.

Unfortunately, this encryption layer does not address situations where un-
trustworthy clients should not know that certain monitors exist. This problem
can be solved by incorporating access control into device discovery mechanisms.

6.4 Supporting Sophisticated Data Interaction

CONSUL is lightweight and provides simple data access. However, as discussed
in this section, CONSUL can support high-level data handling and can be used to
address data access issues important in context-aware application development.

Researchers are increasingly concerned with performing in-network data ag-
gregation to reduce network communication. Approaches include directed diffu-
sion [19], Tiny Aggregation (TAG) [20], and digest diffusion [21]. CONSUL can
support data aggregation by employing a hierarchicy of monitors. An aggrega-
tion monitor is at the top of the hierarchy, and is constructed by registering
persistent queries on neighboring monitors or aggregation monitors of the same
name. An application receives query responses only from the top-level monitor.

Another data access issue of mounting concern is imprecise data. Recent
work has allowed applications to detect and respond to imprecision. For in-
stance, spatio-temporal relationships between sensor readings can be exploited
in an online learning algorithm to predict current readings and detect abnormal-
ities [22]. Other approaches quantify the tolerable level of uncertainty of a query
and the level of uncertainty associated with a response [23]. A simple variation
of these approaches could be employed using CONSUL, again through the use
of a hierarchy of monitors. The top-level monitor registers a persistent query
on other monitors of the same type and begins to calculate statistics about the
monitor readings. If a reading is not within a specified threshold of the statistical
expectation, the top-level monitor decides what to report to the application.

Researchers have also become interested in adaptively providing access to
data and services given the quality of service required by the application and
the state of the environment [24, 25]. CONSUL can be used to build such systems.
CONSUL context monitors can be used to monitor properties associated with
services that can affect an application’s performance (e.g., a bandwidth monitor
for a streaming video service). These monitors can be used by a quality of service
evaluation component to adaptively provide optimal access to services.

7 Conclusions

In this paper, we presented CONSUL, a lightweight middleware designed to
support context-aware application development. CONSUL simplifies context

Supporting Generalized Context Interactions 105

interactions by encapsulating sensing and monitoring tasks, and provides a sim-
ple API for accessing context. In CONSUL, context monitors perform sensing
tasks, and handle one-time and persistent queries issued by applications. An
application uses a monitor registry to obtain monitors. Thus, the responsibility
for obtaining the desired monitor from a constantly changing set of monitors is
placed on the middleware, and the application can interact with sensors using a
unified API.

The applications presented highlight how CONSUL meets requirements for
middleware designed for dynamic mobile environments; it is portable, scalable,
adaptable, and applicable to small devices. The applications presented demon-
strate CONSUL’s use on a range of platforms. Since CONSUL’s underlying com-
munication mechanism is very simple, if the device discovery mechanism used
for an application scales well, then CONSUL scales no worse than a standard
client/server application. Adaptability is demonstrated in the smart room ap-
plication by CONSUL’s use of device discovery to find and replace sources of
context. Finally, CONSUL has an extremely small footprint, and can be used in
applications on a mobile phone, whose resources and features are limited.

References

1. Dey, A.K., Abowd, G.D.: Cybreminder: A context-aware system for supporting re-
minders. In: Proc. of the 2nd Int’l Symp. on Handheld and Ubiquitous Computing.
(2000) 172–186

2. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

3. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proc. of MobiCom. (2000) 20–31

4. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: Proc.
of the 2ndnd Int’l Symp. on Wearable Computers. (1998) 92–99

5. Kindberg, T., Barton, J.: A Web-based nomadic computing system. Computer
Networks 35 (2001) 443–456

6. Romn, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: A middleware infrastructure for active spaces. IEEE Pervasive Computing 1
(2002) 74–83

7. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous comput-
ing. In: Proc. of MobiSys. (2004) 177–189

8. Brown, P.J.: The stick-e document: a framework for creating context-aware appli-
cations. In: Proc. of EP’96. (1996) 259–272

9. Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from the labora-
tory to the marketplace. IEEE Personal Communications 4 (1997) 58–64

10. Nelson, G.J.: Context-Aware and Location Systems. PhD thesis, University of
Cambridge (1998)

11. Want, R., Hopper, A., Falco, V., Gibbons, J.: The Active Badge location system.
ACM Transactions on Information Systems 10 (1992) 91–102

12. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology (2000)

106 G. Hackmann et al.

13. Yellin, D.M.: Stuck in the middle: Challenges and trends in optimizing middleware.
SIGPLAN 36 (2001) 175–180

14. Hong, J., Landay, J.: An infrastructure approach to context-aware computing.
Human-Computer Interaction 16 (2001)

15. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proc. of the 24th Int’l. Conf. on Software Engineering. (2002)
363–373

16. McGlynn, M.J., Borbash, S.A.: Birthday protocols for low energy deployment
and flexible neighbor discovery in ad hoc wireless networks. In: Proceedings of
MobiHoc. (2001) 137–145

17. Huang, Q., Julien, C., Roman, G.C.: Relying on safe distance to achieve strong
partitionable group membership in ad hoc networks. IEEE Transactions on Mobile
Computing 3 (2004) 192–205

18. Legion of the Bouncy Castle, The: The legion of the bouncy castle.
http://www.bouncycastle.org/ (2004)

19. Intanagonwiwat, C., Govindan, R., D.Estrin, Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. ACM/IEEE Trans. on Networking 11
(2002) 2–16

20. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. In: ACM Symp. on Operating System Design
and Implementation. (2002)

21. Zhao, J., govindan, R., Estrin, D.: Computing aggregates for monitoring wire-
less sensor networks. In: 1st Int’l. Workshop on Sensor Network Protocols and
Applications. (2003)

22. Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. In: Proc. of the
2nd Int’l. Conf. on Wireless Sensor Networks and Applications. (2003) 78–87

23. Cheng, R., Prabhakar, S.: Managing uncertainty in sensor databases. SIGMOD
Record, Special Section on Sensor Network Technology and Sensor Data Manage-
ment 32 (2003)

24. Noble, B., Satyanarayanan, M.: Experience with adaptive mobile applications in
odyssey. Mobile Networks and Applications 4 (1999)

25. Capra, L., Emmerich, W., Mascolo, C.: Carisma: Context-aware reflective middle-
ware system for mobile applications. IEEE Trans. of Software Engineering Journal
(TSE) (2003)

A Middleware Centric Approach to Building
Self- dapting Systems

Svein Hallsteinsen, Jacqueline Floch, and Erlend Stav

SINTEF ICT, 7465 Trondheim, Norway
{svein.hallsteinsen, jacqueline.floch, erlend.stav}@sintef.no

Abstract. The use of handheld networked devices to access information
systems by people moving around is spreading rapidly. Systems being
used in this way typically face dynamic variation in their operating en-
vironment. This poses new challenges for system developers that need to
build systems that adapt dynamically to the changing operating environ-
ment in order to maintain usability and usefulness for mobile users. In
this paper we propose an approach to building such self-adapting systems
where the adaptation is handled by generic middleware. Our approach
builds on component frameworks and variability engineering to achieve
adaptable systems, and property modelling, architectural reflection and
context monitoring to support dynamic self-adaptation.

1 Introduction

Computers and networking technology are becoming an integral part of our living
and working environment. The increasing mobility and pervasiveness of comput-
ing and communication enable new services and applications that can improve
quality of work and life. When people are using handheld networked devices
while moving around, significant variability is introduced in the operating en-
vironment for the provided services. For example, communication bandwidth
changes dynamically in wireless communication networks, or user interface pref-
erences change when on the move because light and noise conditions change.
Under such circumstances, dynamic adaptation is required in order to retain
usability, usefulness, and reliability of the application. This poses a significant
challenge for application developers, and existing software development method-
ology and middleware technology give little support for such dynamic adaptivity.
Solutions exist that support dynamic reconfiguration, but we lack means for de-
scribing dependencies between application and context, and for reasoning about
the influence of context changes on application configuration.

In this paper we propose a middleware centric approach to building applica-
tions capable of adapting to dynamically varying requirements being developed
in the FAMOUS1 project. Our approach builds on the following main ideas:

1 FAMOUS (Framework for Adaptive Mobile and Ubiquitous Services) is a strategic
research programme at SINTEF funded by the Research Council of Norway.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 107–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

a

108 S. Hallsteinsen, J. Floch, and E. Stav

– Component frameworks as a means to build both applications and middle-
ware that are capable of being adapted by reconfiguration.

– Annotation of components and compositions with property characteristics
in order to discriminate between alternative configurations.

– implementation of adaptation management as generic middleware services
exploiting architectural reflection.

Self-adaptation has so far typically been applied to mission critical systems,
where software development cost has not been a limiting factor and consider-
able additional development effort to achieve the necessary flexibility has been
acceptable. Our approach is instead targeted on everyday applications, where
more cost effective ways to achieve self-adaptation must be found. For these sys-
tems self-adaptation does not need to be perfect, as long as it provides perceived
benefit by better being able to maintain service quality and user satisfaction
during dynamic variations in operating conditions and user requirements. We
are thus talking about providing sufficient utility for everyday users, much in
the same way as discussed by Shaw in [15].

The paper is organized as follows: First we briefly present some concepts
central to our approach. Then we explain the approach and demonstrate it by
walking through the design and test of a simple pilot application built on a
prototype implementation of the middleware. Next we evaluate the approach
based on the experience with the pilot application. Finally we discuss related
research that has inspired our work before concluding and discussing plans for
further research.

2 Foundations

In this section we briefly explain some central concepts of our approach.

Middleware. We understand middleware as generally reusable software that en-
ables the execution of sets of collaborating components in a heterogeneous and
distributed execution environment. Typical examples are CORBA, MS COM+
and J2EE. In addition to the basic mechanisms facilitating configuration and de-
ployment of component configurations and facilitating communication between
components, such middleware typically also includes reusable components pro-
viding commonly needed services, for instance persistent data storage and user
authentication. We believe that adaptation is a common concern for all sorts of
applications intended for use in a modern distributed and partly mobile com-
puting infrastructure and therefore should be supported by middleware.

Component Frameworks. Szyperski [18] defines a component framework as “a
dedicated and focused architecture, usually around a few key mechanisms, and
a fixed set of policies for mechanisms at the component level”. In our use of
the concept we also include the components that can be plugged into the ar-
chitecture to build working systems and rules constraining such building. A
component framework may be fairly generic, supporting the building of almost

A Middleware Centric Approach to Building Self- dapting Systems 109

any kind of component-based system, or more specific and meant to, support the
implementation of a family of similar systems. A specific framework is usually
a specialization of a more generic framework that constrains the architecture
of system families. Our approach defines both a generic component framework:
the FAMOUS adaptation middleware, and a specific component framework: the
application framework.

Variability Engineering. In order to construct a useful component framework
for a system family, one needs to understand the variation in requirements that
it has to cover. Analyzing the need for variation and deciding on how to build
this variability into a component framework is central in the design of product
line or system family architectures [2] [20] and is often referred to as variability
engineering.

Reflection. Maes [6] defines computational reflection as “the activity performed
by a system when doing computation about (and by that possibly affecting)
its own computation”. Typically this means that the system has some sort of
model of itself. By architectural reflection we understand making available a
model of the system architecture at runtime and making use of it to affect the
computation performed by the system. This principle is at the heart of our
approach to adaptation.

3 Overall Architecture

An overview of our approach is given in Figure 1. Applications are built as com-
ponent frameworks constructed to support the creation of application variants
matching the different requirement sets that may occur during use. Application
variants can differ in a number of ways, for example user interface style and modal-
ity, functional richness, quality properties provided to the user, how the compo-
nents are deployed on a distributed computing infrastructure, and what resources
and quality properties they need from the platform and network environment.

The adaptation middleware is responsible for creating and maintaining a
suitable application variant based on the application framework.

Fig. 1. Overall runtime architecture

a

110 S. Hallsteinsen, J. Floch, and E. Stav

The central components of the adaptation middleware are the adaptation
manager, the context monitor, the planner and the configurator. The context
monitor monitors the user context and the execution environment of the appli-
cation and keeps the adaptation manager informed about changes. When changes
occur that make the running variant of the application unsuitable in some man-
ner, the adaptation manager will invoke the planner component, which consults
the architecture model to generate plans for and evaluate other possible compo-
sitions of the application with respect to their suitability in the current context.
If the best composition found is a sufficiently big improvement over the current
composition, the adaptation manager instructs the configurator to dynamically
reconfigure the application. The same mechanism is also used at application
startup to find and set up the most appropriate initial application variant.

The architecture model of the application framework is a runtime representa-
tion of the application framework architecture, while the component repository
stores the concrete components available for plugging into the framework.

In this paper we focus on the modelling of the application framework archi-
tecture and how this model is represented and used at runtime by the adaptation
manager to make decisions about adaptation. There are also many challenges re-
lated to context monitoring and dynamic reconfiguration [16], but this is outside
the scope of this paper.

4 Application Framework Architecture Model

The application framework consists of a model of the framework architecture
and a set of components fitting into the architecture. Application variants suited
for different situations may be created from the framework by populating the
architecture with an appropriate set of concrete components. The architecture
model defines the allowable compositions.

The adaptation middleware needs a model of the framework architecture that
can be represented efficiently at runtime and serve the needs of both the planner
and the configurator to understand the variability supported by the application
framework and how to configure application variants with given properties. This
model must cover the following aspects of the architecture: i) structure, ii) distri-
bution, iii) variability and iv) property specifications. Furthermore it should be
derivable from design time models that are similar to models the developers are
already familiar with. Our solution builds on ideas introduced by architecture
definition languages [8] such as Darwin [5] and Koala [19], and adopted by UML
2.0 [11], and on work on quality of service modelling in the context of UML [12].

4.1 Structure

The architecture model models an application as a composition of component
roles collaborating through ports connected to each other (see Figure 2). A port
either defines a service implemented by the role and offered to its collaborating
components, or a service needed by the role from its collaborating components

111

Fig. 2. Component roles and ports

in order to implement its offered services. Connections between ports are bidi-
rectional, and the functional part of the service interaction is defined by required
and provided interfaces at each end of the connection.

Hierarchical decomposition is supported through composite components. A
composite component has an inner composition of roles and associated sets of
candidate components, and may be seen as a sub-framework. At the root of
this hierarchical decomposition is the role representing the application and its
interaction with the user and the execution environment.

4.2 Distribution

The execution environment is modeled as a set of node roles connected by
link roles. Distribution is modeled by associating component roles with abstract
nodes of the computing infrastructure. This association means that the compo-
nent playing the role in an application or component variant must be deployed
on the associated abstract node. Mapping from abstract to actual nodes is per-
formed at runtime. Component deployment can also be performed at runtime as
part of preparations for reconfiguration, allowing small devices to save memory
by avoiding keeping all components pre-deployed. The meta-information for a
component can be deployed independently of the component, and the planner
can utilize this information for all deployed and deployable components through
the architecture model.

4.3 Variability

Variability is modelled by associating sets of alternative compositions to applica-
tions or composite components, or by associating sets of alternative components
to component roles. The set of component can be extended by adding new al-
ternative components that match a component role. Creating an application
variant with given properties means selecting the appropriate alternative from
each set. In this way one may vary the structure, the selected components and
the distributions of the application.

Not all variability is naturally expressed in this way however. Therefore we
also allow components that manage their own adaptation. Such components must

A Middleware Centric Approach to Building Self- dapting Systemsa

112 S. Hallsteinsen, J. Floch, and E. Stav

define an adaptation port that is used by the adaptation manager to coordinate
the adaptation of self-adapting components with its own activities.

4.4 Property Specifications

Basically adaptation management is about matching the properties of the appli-
cation to the user needs and preferences and to the properties of the execution
environment. For example, if the user is driving and prefers hands-free operation,
the adaptation manager should find a configuration that offers this property. In
order to do so the adaptation manager needs the following information:

– The user needs and preferences (as determined by the user context).
– The properties of the execution environment.
– The properties offered by application variants to the user and how they

depend on the properties of the execution environment.
– The properties needed by the application from the execution environment.

To model this information we introduce property characteristics and prop-
erty constraints. Property characteristics are quantifiable characteristics of the
context or of an application or component variant. A property characteristic has
a name and a value range. The value range may be specified as string, integer
(optionally with range indicated), enumeration (with allowable values listed) or
boolean. Some examples of property characteristics are given in Table 1.

A property constraint limits the allowed values of a property characteristic
and typically expresses a need or an offer regarding a particular property char-
acteristic. For example, using the property characteristics listed in Table 1, the
constraint “haf = yes” associated with the user, indicates that the user needs
hands-free operation, while the same constraint associated with a variant of an
application, indicates that this variant offers hands-free operation.

Property characteristics and property constraints are similar to quality of
service characteristics and quality of service constraints as defined by the pro-
posed UML profile for modelling QoS and Fault tolerance submitted to OMG
by I-Logix, Open-IT and THALES [12]. However, property characteristics are
intended to be used more generally to describe also properties not naturally
perceived as quality of service, like offer or need for various types of resources.

We associate property constraints with ports to describe the properties of the
service associated with the port. In the case of a service offered, the property
constraints associated with the port describe the offered properties. In the case

Table 1. Example property characteristics

Name Value range Explanation
avy 1:100 Availability of the service provided by an application
rsp 1:100 Response time of the service provided by an application
mem 1:100 Amount of memory of a computer
nbw 1:100 Bandwidth of a network connection
nsb 1:100 Stability of a network connection
haf yes, no Hands-free operation

113

Fig. 3. Ports with property specifications

of a service needed the property constraints describe the needed properties. The
properties of a composition or component are the aggregation of the properties
of its ports.

Often the offered properties of a composition depend on the properties of
the services it needs or by the properties of its constituent components. This is
modeled by allowing a property constraint to be expressed as a function of other
properties.

For example a property constraint describing a service offered by a component
can be expressed as a function of one or more of the properties of the services
offered to the component (and used in a given configuration), and/or of the
properties of its constituent components.

The language for specifying such functions is not yet fully specified. So far we
have used simple arithmetic expressions where properties used as operands are
referred to by characteristic name, qualified by the port name, and for properties
of roles in compositions, also the role name. Some examples of property anno-
tations are given in Figure 3. More examples are given in the experimentation
section below.

5 Adaptation Management

In this section we describe in more detail how the adaptation manager works.
When a context change occurs, this is detected by the context monitor which
notifies the adaptation manager. The adaptation manager then searches for the
configuration that best fits the current context and resource situation of the
application. The search is performed by using the planner component to iterate
through plans for all possible application variants. A plan is generated by select-
ing a concrete component for each component role of the application. As some
of the selected components can be composite components, the plan generation
process continues recursively until all leaf nodes are selected. The best configu-
ration is selected by computing a utility value for each plan with respect to the
user preferences and properties of the execution environment. The utility value
is computed by the utility function which is defined by the developer. The utility

A Middleware Centric Approach to Building Self- dapting Systemsa

114 S. Hallsteinsen, J. Floch, and E. Stav

funciton is typically a weighted mean of the differences between the offered and
needed properties. The weights in the utility function can represent changing
user priorities, and can be adjusted at runtime. The variant with the highest
utility is chosen. In order to avoid that the system is busy adapting all the
time, the adaptation manager also has to evaluate whether the improvement is
high enough to justify an adaptation. The evaluation is based on user-adjustable
settings for a utility improvement threshold and adaptation delay.

During the configuration phase, the configurator component will go through
the selected configuration plan attempting to perform only the minimum num-
ber of changes to the composition of the application. This is done by comparing
the component roles in the new plan with those in the plan used in the cur-
rent composition, and keeping all component instances where the same concrete
component has been selected to play a role. Changes can involve creating, replac-
ing and removing component instances, relocating component instances to other
nodes, and adding and removing connections between components. To make sure
these changes do not corrupt the current execution of the service, the component
configurator pattern has been applied, and affected components are requested to
suspend their activity before the reconfiguration occurs and to resume it when
the changes are completed.

6 Experimentation

In order to demonstrate and experiment with the proposed approach we have
built a middleware prototype and a simple application. In this section we walk
through the design of the application framework and the behavior of the appli-
cation in an example usage scenario.

The application domain is inspection and maintenance support for janitors
where janitors use handheld PDAs during their work. Janitors in large organ-
isations often need to do maintenance on a variety of technical installations,
possibly spread over large geographic areas. Their work typically include several
very different working situations, ranging from administrative work in a clean
and quiet and connected office environment, through travelling between techni-
cal installations needing maintenance to doing repair work in rugged industrial
environments with varying network coverage. We have chosen an application for
organising the work, including support for tasks such as fault report registration,
repair job definition, work assignment, and progress reporting.

The implementation environment is Java 2 Micro Edition, Personal Profile
including RMI. In the prototype middleware the context monitor has been
replaced by a context simulator to facilitate experimentation with the proto-
type.

6.1 Context Variations

We have identified a number of context parameters that vary during a typical
working day of a janitor and that influence the needs and preferences of the
janitor and the execution environment of the applications he is using:

115

– The network coverage varies from place to place and in some places there is
no coverage at all.

– During some operations hands are busy and the janitor must use an audio
based user interface.

– In some situations the janitor needs to use several applications concurrently
and the device runs out of memory.

To be able to describe adaptation to these context variations we define a
set of property characteristics that depend on context. The properties used in
scenario are described in Table 1. For the sake of simplicity we have chosen a
value range from 1 to 100 for all property characteristics except for the hands-
free property characteristic. The value range is defined by the developer. The
current prototype does not support varying user priorities. Fixed weights are
associated to user preferences.

6.2 Application Design

In accordance with the proposed approach the application is designed as a com-
ponent framework. An overview of the framework architecture in the form of an
and/or-graph is given in Figure 4.

The root node has associated two alternative components. One is a medium
client variant where the user interface and the application logic are deployed
on the client device, while the shared database is deployed on the server. The
internal architecture and the property annotations of this variant is shown at
the left side of Figure 5. The other is a self-reliant client variant with also a
local database replicating relevant data deployed on the client. The internal
architecture and the property annotations of that variant is shown at the right
side of Figure 5.

Two alternative components are associated to the UI role, which appears both
in the thin and the self reliant client variants. One UI component implements
a normal display-, pointer- and keyboard-based user interface, while the other
implements a voice- and ear-based interface. The property characteristics of the
UI are described in Figure 6. These properties directly influence the application
properties.

Fig. 4. Component framework overview

A Middleware Centric Approach to Building Self- dapting Systemsa

116 S. Hallsteinsen, J. Floch, and E. Stav

Fig. 5. Medium and self-reliant client variants

Fig. 6. Component repository with property annotations

The utility function is shown in Figure 7 together with the top level diagram
for the application framework architecture showing the application and its con-
text. The purpose of this diagram is to name the context objects of interest,
here the user “usr” and the execution environment “exe”, such that they can be
referred to in the utility function.

117

Fig. 7. The utility function

6.3 Usage Scenario

We have simulated a possible usage scenario for the application described
above, using a context simulator instead of a context monitor. An extract
from a trace of the simulation is included in Table 2. In the following we
walk through the simulation. Note that in the current middleware proto-
type, the variant with the highest utility is always chosen; the adaptation
manager does not evaluate whether the improvement is high enough to jus-
tify an adaptation.

The janitor launches the application on his handheld computer to check his
assignments for the day before he leaves home in the morning. He is also running
a video player on the device showing morning news on a screen in the kitchen.
The context description for this situation is given in Table 2. There is little mem-
ory and cpu because the video player uses a lot. The home wlan provides high
capacity network connection. In this situation the medium client configuration
is the best match and is chosen as the initial configuration. For the UI role the
Normal UI is chosen since hands and eyes are available.

Table 2. Extract from trace of test run simulating usage scenario from the example

Context (changes in bold) Utility(selected variant in bold)
needed by user offered by exec. env s.r.cl.+

no.ui
s.r.cl.+
hf.ui

m.cl.+
no.ui

m.cl.+
hf.uihaf avy rsp mem nbw nsb

Initial situation
no 80 30 30 70 90 0 0 1 0

Janitor shuts down video player
no 80 30 70 70 90 1 0 1 0.66

Janitor drives away from house
no 80 30 70 30 90 1 0 0.81 0.47

Janitor wants hands-free UI when driving
yes 80 30 70 30 90 0.66 1 0.47 0.8

Janitor enters area with poor network coverage
yes 80 30 70 30 20 0.61 0.94 0.24 0.58

A Middleware Centric Approach to Building Self- dapting Systemsa

118 S. Hallsteinsen, J. Floch, and E. Stav

The janitor notices that his first job is to fix the ventilation system in a large
building which is causing problems. He checks if there are any special tools or
spare parts that are recommended to bring, given the symptoms that has been
reported. The janitor shuts down the video player, and walks out to his car to
go to the building where the faulty installation is located. Now a lot of memory
is freed, and this triggers the adaptation manager. In this situation (2nd line of
Table 2) the self reliant client variant has the same utility as the one running,
but since it is not better, no adaptation takes place.

As the janitor drives away from the house, he moves out of reach of the
home WLAN and his handheld swithches to GPRS, causing a decrease in the
network bandwidth (3rd line in Table 2). Now the self-reliant client is better and
a reconfiguration takes place.

While he is driving the janitor wants to check a few details, but since his
eyes and hands are busy with the driving, he prefers hands-free UI (4th line
in Table 2). This causes the utility of the configurations with handsfree UI to
increase and another reconfiguration occurs.

The building the janitor is heading for is part of an industrial plant located
in a remote place with poor GSM coverage, and as he approaches the place
the network stability decreases significantly (4th line in Table 2). Although this
influences the utility values, the running configuration is still the best one and
no adaptation occurs.

7 Evaluation

By building the prototype middleware and the pilot services as described above
we have demonstrated that the proposed approach to adaptation is feasible. In
this section we discuss the merits of the approach based on the experience from
this exercise.

Effectiveness of expressing variability. As illustrated by the example, we have
been able to model interesting adaptive behaviour, and the possibility to include
self-adapting components enables the resort to other ways than reconfiguration
at the component level where this is not suitable. However, there are some lim-
itations in our current approach that we should overcome.

Firstly the current adaptation manager requires that there is a manageable
set of variants to be used in the algorithm that searches for the best configuration.
This makes it difficult to deal with more continuous variation in properties as
is achieved for example by varying buffer sizes, the resolution of images, or
the precision of calculations. To cope with this we need a more sophisticated
approach to evaluating properties in the planner.

Another limitation is that a property must be expressed as one value. The
OMG draft standard allows a quality characteristic to be described in several
“dimensions”, and an extension in that direction would clearly improve the ex-
pressive power of the language for modeling properties.

Scaling to real life applications. The implementation of the pilot services is
somewhat skeletal and has few components and variants. Thus we have little

119

experience as to the scalability of the proposed approach. Issues that might
threaten scalability are memory requirements of the runtime representation of
the architecture model and memory and cpu requirements of the algorithm for
selecting the best configuration. In particular the memory and cpu requirements
of the algorithm for selecting the best configuration as it is currently implemented
causes some concern: it is an exhaustive search of all possible configurations that
generates a plan for the construction of each configuration in the form of an
object structure.

The number of configurations depends exponentially on the number of vari-
ation points (or-nodes in the and-or graph). In a real application, the number of
possible configurations may be quite high. On the other hand we believe there
are many opportunities for employing various forms of heuristics to reduce the
scope of the search.

Extra Burden on Developers. The additional tasks for the developers compared
with traditional development are:

– Developing a framework rather than a single application.
– Providing the property annotations and the utility function.
– Providing the runtime representation of the framework architecture.
– Making components reconfigurable.

Developing the application as a framework with built-in variability is clearly
an extra burden on the developers. However the alternative may be to develop
several variants of the application for use in different contexts, and this may
require more work than the work required to model variation and properties.
After all it is now widely accepted that the component based system family
approach is an efficient way to deal with varying requirements [2].

In the prototype the runtime representation for the application framework
architecture model with the property annotations were hand-coded in Java. Once
it had been designed, the implementation was fairly trivial. However, in a more
complete implementation we foresee that this can be generated by tools from an
annotated design time model in the same style as shown in the presentation of
the pilot application design above.

Still, defining property characteristics and utility functions is not at all straight
forward, and may require specially trained developers. We need more experience
to say how difficult it will be to develop such models in typical cases. The defini-
tion of a standard vocabulary of properties and the development of adaptation
patterns are approaches we foresee.

Size and complexity of the application framework architecture model. A criti-
cal issue in all the considerations above is the size and complexity of this model.
The key question is how accurate it must be to support useful adaptation to
common context changes for everyday applications. At the moment our pilot
application is too simple to draw conclusions about this.

A Middleware Centric Approach to Building Self- dapting Systemsa

120 S. Hallsteinsen, J. Floch, and E. Stav

8 Related Work

The QuA project [17] presents a component based platform able to dynamically
plan and compose a service based on QoS specifications from a repository of
available components. The approaches are similar in the sense that both are
based on explicit modelling of the properties of components and compositions.
However, while QuA so far has focused on initial configuration of services with
media streaming as the application area, we have focused on dynamic adapta-
tion to context with access to information systems from mobile clients as the
application area.

The CASA framework [9] supports development of applications which need to
dynamically adapt due to unreliable availability of resources in self-organized mo-
bile networks. An XML-based contract specification language is used to describe
application contracts, allowing resource requirements for different configurations
to be computed. All application configurations must be specified explicitly, in
contrast to our approach where configurations are created automatically by ex-
ploiting the variation capabilities of the framework architecture. CASA has fo-
cused on a peer-to-peer telecom architecture and defines a protocol for support
service negotiations between distributed applications. We have not yet consid-
ered the coordination of the adaptation of multiple applications. This is an issue
we plan to work with in the future.

The Aura project [10] addresses the dynamic composition of resource-aware
services to support user tasks and proposes an efficient algorithm for searching
the configuration space. Their approach is similar to ours in the sense that they
also use properties to support reasoning on the suitability of service compositions
to a particular situation. Although we reason and configure at the component
level and take into account a wider set of properties (e.g. functional richness),
we intend to investigate how this algorithm can be tailored to our approach.

Several approaches discuss the importance of adaptation in mobile computing
middleware [7]. ReMMoC [4] or DynamicTAO and UIC [13] are representative
approaches. These approaches focus on the adaptation of the underlying mid-
dleware rather than the adaptation of applications. For example, they enable
different concurrency management, connection management or service discovery
strategies to be selected. They exploit similar mechanisms as our approach, such
as component frameworks and reflection. The key issues to be addressed are
however slightly different. As the middleware offer basic services that multiple
applications rely on, robustness, security and performance are central issues. On
the other hand, differently from applications, underlying middleware is quite
stable and remains the domain of expertise of few developers. The key issues for
applications are acceptance by developers and usability.

An important issue during dynamic reconfiguration is the preservation of
application consistency. In our approach, we apply the component configurator
pattern [14], i.e. components affected by reconfiguration are requested to suspend
and resume their activity before and after reconfiguration. We need to elaborate
this approach with support for state preservation. Middleware oriented and soft-
ware pattern based approaches have been proposed. In [1] a CORBA service

121

is presented that allows dynamic reconfiguration with maximum transparency
for the client and server side developers. In [3] software reconfiguration patterns
based on statecharts are described.

9 Conclusion and Further Work

We have presented a middleware centric approach to supporting the building of
applications capable of adapting to a dynamically varying context as is typical of
mobile use. The proposed approach builds on the idea of achieving adaptability
by building applications as component frameworks from which variants with
different properties can be built dynamically.

In this paper we have focused on the modelling of the adaptation capabilities
and the decision making related to adaptation, and we have demonstrated the
feasibility of the approach by a walkthrough of an example application design
and how it behaves in a typical usage scenario. We have also done prototype
implementation of the proposed adaptation middleware and a simple pilot ap-
plication for mobile use and we have done some simple tests.

The tests that we have done are promising although it is to early to draw
firm conclusions about the performance of our approach in real life situations.

We are now doing a more elaborate implementation of the prototype mid-
dleware and will implement more complete pilot services. This will be used to
do a more thorough evaluation of the proposed approach by analyzing the ex-
periences from the development of pilot applications and by studying trial use
of them and to evolve the ideas presented here.

References

1. Almeida, J.P.A., Wegdam, M., van Sinderen, M., and Nieuwenhuis, L., “Transpar-
ent Dynamic Reconfiguration for CORBA”, in Proc. of the 3rd Int. Symposium
on Distributed Objects and Applications, 2001, pp. 197-207.

2. Bosch, J., “Design & Use of Software Architectures - Adopting and Evolving a
Product-Line Approach”, Addison Wesley, 2000. ISBN 0-201-67494-7.

3. Gomaa, H. and Hussein, M., “Dynamic Software Reconfiguration in Software Prod-
uct Families”, in Poc. of the 5th Int. Workshop on Product Family Engineering
(PFE), Lecture Notes in Computer Science, Springer-Verlag, 2003.

4. Grace, P. Blair, G.S., and Samuel, S. “ReMMoC: A Reflective Middleware to Sup-
port Mobile Client Interoperability”, in Proc. of the International Symposium on
Distributed Objects and Applications (DOA), 2003.

5. Magee, J., Dulay, N., Eisenbach, S., and Kramer, J., “Specifying Distributed Soft-
ware Architectures”, in Proc. of the Fifth European Software Engineering Confer-
ence, 1995.

6. Maes, P., “Concepts and experiments in computational reflection”, in Proc. of
OOPSLA’87.

7. Mascolo, C., Capra, L. and Emmerich, W., “Mobile Computing Middleware”, Tu-
torial Summary, in Advanced Lectures on Networking, LN CS Vol. 2497. 2002. pp.
20-58.

A Middleware Centric Approach to Building Self- dapting Systemsa

122 S. Hallsteinsen, J. Floch, and E. Stav

8. Medvidovic, N., and Taylor, R.N., “A classification and Comparison Framework
for Software Architecture Description Languages”, IEEE Transactions on Software
Engineer-ing, 2000, pp. 70-93.

9. Mukhija, A. and Glinz, M. “A Framework for Dynamically Adaptive Applications
in a Self-organized Mobile Network Environment”, in Proc. of the 24th Interna-
tional Conference on Distributed Computing Systems Workshops, 2004, pp 368-
374.

10. Poladian, V., Sousa, J., P., Garlan, D., and Shaw, “M. Dynamic Configuration of
Resource-Aware Services”, in Proc. of the 26th Int. Conf. on Software Engineering,
2004.

11. OMG, “UML 2.0 Superstructure Specification”, Final adopted specification. Au-
gust 2003.

12. OMG, “UML Profile for Modelling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms”, OMG draft adopted specification November 2003.

13. Roman, M., and Kon, F., “Reflective Middleware: From Your Desk to Your Hand”,
in IEEE Distributed Systems Online Journal, Special Issue on Reflective Middle-
ware, 2001.

14. Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F., “Pattern-Oriented Software
Architecture. Patterns for Concurrent and Networked Objects”, John Wiley &
Sons, Ltd, 2000. ISBN: 0-471-60695-2.

15. Shaw, M. “Everyday Dependability for Everyday Needs”. Keynote speech at ISSRE
2002.

16. Stav, E., and Hallsteinsen, S., “Definition of adaptive architecture, FAMOUS de-
liverable D3.1-v1”. SINTEF report STF90 A04046, 2004.

17. Staehli, R., Eliassen, F., Aagedal, J.Ø., and Blair, G., “Quality of Service Semantics
for Component-Based Systems”, in Proc. of the 2nd Int’l Workshop on Reflective
and Adaptive Middleware Systems, 2003, pp. 153-157.

18. Szyperski, C., “Component Software: Beyond Object-Oriented Programming”, Ad-
dison Wesley, 1997 (2nd ed. 2002, ISBN 0-201-74572-0).

19. van Ommering, R., van der Linden, F., Kramer, J., and Magee, J., “The Koala
component model for consumer electronics software”, IEEE Computer, Vol. 33,
Nr. 3, March 2000, PP. 78-85.

20. van Ommering, R., and Bosh, J., “Widening the Scope of Software Product Lines
- From Variation to Composition”, in Proc. of the Second Software Product Line
Conference (SPLC 2), 2002, pp. 328-347.

PlanetSim: A New Overlay Network
Simulation Framework

Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol,
Helio Tejedor, and Robert Rallo

Department of Computer Science and Mathematics, Universitat Rovira i Virgili,
Avinguda dels Països Catalans 26, 43007 Tarragona, Spain

{pgarcia, cpairot, rrallo}@etse.urv.es

Abstract. Current research in peer to peer systems is lacking appro-
priate environments for simulation and experimentation of large scale
overlay services. This has led to a plethora of custom made simulators
that waste development resources and hinder fair comparisons between
different approaches. In this paper we present a new simulation / ex-
perimentation framework for large scale overlay services with three main
contributions: i) provide a unifying approach to simulation/ experimen-
tation that eases the transition from simulation to network testbeds, ii)
it clearly distinguish between the design of overlay algorithms (key based
routing), and the applications and services built on top of them, iii) offer
a layered and modular architecture with clear hotspots, and pervasive
use of design patterns. We have used PlanetSim to implement and evalu-
ate overlay networks such as Chord and Symphony, and overlay services
such as Scribe application level multicast, and keyword query systems
over distributed hash tables.

1 Introduction

In the last years, we have experienced an increasing interest in peer to peer
systems from research settings but also from commercial vendors because of its
mainstream use in the Internet. Furthermore, the growing bandwidth and com-
puting power in the edges of the network foresee innovative massive applications
of peer to peer technology.

We can classify peer to peer networks as structured or unstructured, depend-
ing on the way they are connected and how the data they contain is arranged. In
a structured network the connections between nodes are of some regular struc-
ture, which allows deterministic and optimal lookup hops (typically O (log N)).
In contrast to structured networks, nodes in unstructured networks do not share
a regular structure and a unified identifier space. Lookups are thus normally
achieved by flooding and using replication in the network.

Structured P2P networks are now a hot research topic and they represent
an interesting platform for the construction of resilient, large-scale distributed
systems. Moreover, structured networks can be used to construct services such

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 123–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 P. García et al.

as distributed hash tables (DHT), scalable group multicast/anycast (CAST)
and decentralized object location and routing (DOLR). We focus our research in
PlanetSim on structured overlays and the design and development of distributed
services on top of them.

In general, both structured and unstructured networks are often called overlay
networks because they are built on top of an existing network, usually on top of
the Internet. At the moment, P2P networks usually do not map the underlying
network or even do not take the layout of these networks into account. As we
can see, these overlay networks are thus working at the application layer, and
use transport protocols like TCP or UDP as communication channels between
inter-connected peers.

P2P researchers are usually more interested in algorithm verification (number
of hops, node stress, link stress) than in simulating the whole TCP/IP stack. As a
direct consequence, researchers find existing network simulators too specific and
low-level. Besides, those simulators exhibit a considerable lack of scalability for
thousands of nodes. Another key problem is that the transition from simulated
code to experimental code is still quite difficult to achieve.

This has led to the development of ad-hoc simulators (SimPastry, FreePas-
try, p2psim, DKS, Tapestry) from a high number of research groups, wasting
expensive resources in infrastructure code and avoiding clean comparisons be-
tween different algorithms. With minor differences, all these ad-hoc simulators
are poorly documented and do not show clear-cut software engineered designs.
Due to these approaches it is quite difficult to reuse code and even harder to
extend those simulators.

To address these limitations, we present PlanetSim, an object oriented sim-
ulation framework for overlay networks and services. The novel contributions of
PlanetSim are the following:

1. PlanetSim presents a layered and modular architecture with well defined
hotspots documented using classical design patterns. This can considerably
reduce the learning curve and thus ease the development of new overlay
services and algorithms.

2. PlanetSim clearly distinguishes between the creation and validation of over-
lay algorithms (Chord, Pastry) and the creation and testing of new services
(DHT, CAST, DOLR) on top of existing overlays. Our layered approach
cleanly decouples services built in the application layer using the standard
Common API for structured overlays [2], and peer to peer algorithms built
in the overlay layer.

3. PlanetSim also aims to enable a smooth transition from simulation code
to experimentation code running in the Internet. Because of this, we pro-
vide wrapper code that takes care of network communication and permits
us to run the same code in network testbeds such as PlanetLab. Further-
more, because we follow FreePastry’s implementation of the Common API,
our overlay services can easily run on top of Rice’s FreePastry Java code.
This enables complete transparency to services running either against the
simulator or the network.

PlanetSim: A New Overlay Network Simulation Framework 125

PlanetSim has been developed in the Java language to reduce complexity
and smooth the learning curve in our framework. We however have profiled
and optimised the code to enable scalable simulations in reasonable time. To
validate the utility of our approach, we have implemented two overlays (Chord
and Symphony) and a variety of services like CAST, DHT, and DOLR. We have
proved that PlanetSim reproduces the measures of these environments and is
also efficient in its network implementation.

This paper is organized as follows. Section 2 gives details of the Planet-
Sim framework architecture and services. We present the framework’s validation
using developed extensions in Section 3. Section 4 compares PlanetSim with re-
lated approaches, and finally we draw conclusions and present future work in
Section 5.

2 PlanetSim Architecture

The overall model comprises a discrete event simulator (time-stepped) that uses
a central step-clock to simulate timing. As we will explain in this section, most
entities in an overlay simulator are related to the routing of messages between
the nodes of the overlay. Nevertheless, overlay simulators must not forget the
underlying network that sustains the overlay and thus include appropriate ab-
stractions and mappings for both routing infrastructures.

We have decided to implement PlanetSim in Java in order to smooth the
learning curve of the framework. We aim to create a framework that is easy
to learn, easy to use, easy to extend, and easy to integrate with other frame-
works. The main drawback of this decision is the performance penalty that Java
imposes. We however have carefully profiled and optimised the code to enable
massive simulations in reasonable time.

2.1 The Common API for Structured Overlays and FreePastry

To better understand the overall architecture we must first introduce the Com-
mon API for Structured Overlays and the FreePastry implementation. We pro-
pose a novel service to be supported by overlay simulators: a façade API to
develop overlay services and applications on top of existing overlays. This API is
based on the proposed Common API (CAPI) for structured Peer-to-Peer over-
lays published in [2]. The main motivation for this decision is the plethora of
applications and services that can be built on top of structured overlays.

In [2] authors identify the Key based Routing (KBR) as the common denomi-
nator of services provided by any structured overlay. Every node in a structured
overlay is thus responsible for a number of keys in the identifier space (key’s
root), and can route messages in O(log N) hops to the keys’s root for any key.

On top of this Tier 0 KBR, structured overlays can be used to construct
services like distributed hash tables, scalable group multicast/anycast and de-
centralized object location (see Figure 1). These services in turn promise to sup-
port novel kinds of distributed applications like notification systems, messaging,

126 P. García et al.

Fig. 1. Common API Diagram

content distribution networks and cooperative replication of archival storage.
Furthermore, many traditional applications like Usenet or DNS have recently
been re-architected on top of these decentralized architectures.

The common API offers two kinds of functions: the first ones for routing and
processing messages in applications, and the second ones for accessing node’s
routing state information. The former include three kind of calls: route, forward
and deliver. The route operation delivers a message to the key’s root. Appli-
cations process messages by executing code in upcalls (forward, deliver) which
are invoked by the underlying routing system. The forward upcall is invoked at
each node that forwards a message and enables to override the default routing
behaviour. The deliver upcall is invoked on the node that is root for a key upon
the arrival of the message.

The second kind of functions for accessing node’s routing state includes lo-
cal_lookup, neighbourSet, replicaSet, update, and range. We will not explain each
function due to lack of space, but all of them give information about routing state
and identifier space information from running nodes.

Using these functions, the authors in [2] define the mapping to different over-
lay algorithms, and they also specify how to construct overlay services like DHTs,
CAST or DOLR.

The common API (CAPI) promises a unifying layer to different DHT ar-
chitectures, and thus enabling to run applications on top of different algorithms
(Chord, Pastry, Tapestry). The API is however loosely defined and each research
group is implementing its own version. This clearly hinders application interop-
erability and it only helps to improve understanding of applications in different
DHTs through a common vocabulary.

After evaluating different overlay systems, we concluded that FreePastry is
the cleanest and more advanced implementation of a structured overlay. They
offer a clean object oriented implementation of the common API in the Java
language. Besides, they have implemented several applications on top of this
API like Scribe overlay multicast, replication systems like PAST and others.
FreePastry is an active project and many research groups are using FreePastry
code to create new innovative P2P services.

PlanetSim: A New Overlay Network Simulation Framework 127

Nevertheless, FreePastry is also poorly documented and it is only extensible
at the application level. It is not possible to implement and simulate other over-
lay algorithms apart from Pastry. Because of this, we have chosen to embrace
FreePastry’s common API implementation in our framework to leverage their
existing code base and developers.

2.2 PlanetSim Layered Design

PlanetSim’s architecture comprises three main extension layers constructed one
atop another. As we can see in figure 2, overlay services are built in the appli-
cation layer using the standard Common API façade. This façade is built on
the routing services offered by the underlying overlay layer. Besides, the overlay
layer obtains proximity information to other nodes asking information to the
Network layer.

The Network layer dictates the overall life cycle of the framework by calling
the appropriate methods in the overlay’s Node and obtaining routing information
to dispatch messages through the Network. As we explain later, the Network
layer can be implemented either by the NetworkSimulator or NetworkWrapper.
Developers can thus transition from simulation to experimentation environments
in a transparent way.

We outline three main extension points (hotspots) in our framework:

• Application: Developers of overlay services like Scribe must extend the Ap-
plication class to implement the required messaging protocol. Application
methods are upcalls from the underlying layer and they notify of specific
messages. The Application code can then send or route messages using
the EndPoint (downcalls) as well as access underlying node routing state.
Any application created at this level can then be run or tested against any
structured overlay in the next layer.

• Node: Developers of overlay algorithms like Chord must extend the Node
class to implement the required overlay protocol. The node provides in-
coming and outgoing message queues that permit to create the KBR in-
frastructure required in the upper layer. At this level nodes interchange
messages using Ids and NodeHandles (IP Address + Id).

• Network: It is also possible to create customized Networks (RingNetwork,
CircularNetwork, RandomNetwork) by selecting specific Id Factories and
also to provide additional routing or proximity costs to the overall routing
infrastructure.

As a direct consequence of this layered approach we can also identify two main
user roles: ones interested in overlay services and others focused on overlay in-
frastructures. The former can thus develop and test different overlay services on
top of different KBR schemes or even probe services without even care about the
KBR layer. Other kind of users can be mainly interested in structured overlays
and thus use the simulator to probe or compare a variety of KBR algorithms.

For example, in our research group, there are researchers working at the ap-
plication layer developing new replicated DHT services, and also experimenting

128 P. García et al.

Fig. 2. PlanetSim class diagram

with query systems on top of different overlays. Another group is working at
the overlay layer to compare security problems and solutions (BadNodes) over
different overlays.

Application Layer
At this layer we have followed FreePastry’s implementation of the Common API.
In this line, the interfaces borrowed from FreePastry are Application, EndPoint,
Message, RouteMessage, Id and NodeHandle. We can see that this API is a
façade to the underlying routing system of the simulator. This layer can thus
permit very easily to test applications like DHT or Scribe multicast over different
implemented overlays like Chord or Symphony.

We outline the Application and EndPoint classes as the main implementers
of the common API. The EndPoint is a façade to the underlying overlay Node
and offers the route method and routing state methods like replicaSet or range.
The Application is a hotspot containing the methods deliver, forward and up-
date that will be invoked by the overlay layer accordingly on reception of
messages. As we can observe, Application provides upcall messages invoked
by the Node and EndPoint provides downcalls to access Node’s routing state
services.

In order to run an application (overlay service) in PlanetSim three configura-
tion files are required: the simulator properties, the overlay properties, and the
simulation properties.

To simulate an overlay we need to specify in those files a concrete Node
(ChordNode) defining the overlay protocol, a concrete IdFactory (CircularId-
Factory) and a specific Network (SimpleNetwork).

PlanetSim: A New Overlay Network Simulation Framework 129

Each node includes a configuration file specifying different configuration pa-
rameters. For example, ChordNode file can define the number of bits in the
identifier, stabilization period or other related parameters. Each Network can
also be properly tuned defining its own parameters.

Finally, when a developer prepares an overlay simulation, he must define in
a configuration file (overlay) several parameters like: Node Type (Chord, Sym-
phony), Network Type, event file, log file, and others.

Configuration information is essential to accurately tune and probe new over-
lays or services, and to validate and compare existing results. The key concept
here is that each hotspot includes its own configuration information file, and the
final execution weaves the different components that create the running overlay
testbed.

Overlay Layer
The main conceptual entity and obvious hotspot of this layer is the Node. A
node contains incoming and outgoing message queues and methods for send-
ing and receiving/processing messages. Each particular node must then include
a complete behaviour or protocol that will dictate which messages to send in
specific times and how to react to incoming messages. Furthermore, to create a
new overlay, the embedded protocol must define its own messages with specific
information to arrange the overlay. This also implies that developers should be
able to define their own message types.

At the overlay layer, the communication is bidirectional with both the appli-
cation and network layers. With the application layer, the Node notifies the Ap-
plication of received messages (upcalls) and it is invoked by the EndPoint façade
in order to route messages or obtain routing state information (downcalls).

Both the EndPoints and the Nodes exchange RouteMessage types. A Route-
Message contains source and target identifiers, as well as information regarding
the next hop in the overlay. It is also possible to modify the next hop route at
the application or overlay layers in order to alter the routing scheme.

With the network layer, the Node hotspot provides the template methods
(join, leave, fail and process) that determine the life’s cycle of every node. The
method process contains the specific protocol each node maintains to create the
overlay. Besides, every node has an incoming and an outgoing message queue;
incoming messages are parsed every step in the process method, and the send
method moves messages to the outgoing queue.

To identify nodes in the overlay, the simulator employs three main entities: Id,
IdFactory and NodeHandle. Ids are custom number types of 32 to 160 bits that
identify nodes in the overall key based routing scheme. The extensible IdFactory
permits to define custom Id generation schemes in each overlay. Additionally,
NodeHandles contain IP to Id value pairs for each node. Furthermore, a Node-
Handle provides a proximity method that queries the Network to obtain network
proximity information.

As we can see, we have many upcalls that define the Node’s life cycle and
registering of applications, and only one downcall to query the Network for
proximity between Nodes.

130 P. García et al.

Network Layer
This layer is the main actor who dictates the overall life’s cycle. The simulator
will run n simulation steps or until a specific goal (i.e. the network is stabilized)
is achieved. In each step, the simulator moves outgoing messages to incoming
queues for all nodes, and then calls the process method in each node to react to
incoming messages.

Furthermore, the simulator must process events in different steps. Events are
node joins, leaves, fails, or lookups. Events can be generated from an event file
declaratively, or programmatically using simulator APIs.

The key hotspot is the Network: it represents the underlying network that
the Simulator uses to route messages. The Network contains a mapping of Node-
Handles to Nodes that permit to correctly dispatch messages from source to
destination.

An overlay can run on top of different networks using different underlying
protocols. Developers can define their own networks, with specific protocols. The
network can also include latency or cost information, or even the topology and
arrangement of real nodes in this network. We could then implement a GT-ITM
(Georgia Tech Internetwork Topology Models) transit stub topology in a network
that would add more real information about costs and latencies.

Furthermore, each node can try to calculate its network proximity to other
node. This can be defined in a NodeHandle’s proximity method, transparently
invoking the Network’s proximity method (following FreePastry’s interface def-
inition). Developers can then decide in the network which proximity metric to
employ (ping, landmarks, etc).

Nevertheless, a simple overlay mostly focused on algorithm verification,
probably will be more interested in a very simple Network –without proxim-
ity information worsening the simulator performance–. In the current version
of PlanetSim, we only provide simple Networks like RingNetwork, or Circular-
Network that do not include latency costs. It is however feasible to incorpo-
rate Peersim [8] or Brite [5] network information to define more realistic net-
works.

An ideal case at this point could be the integration of disparate frameworks:
overlay frameworks with network simulation frameworks. The Network hotspot
and Network factory extension point would theoretically permit to create such
integration points. This is to say for example between J-sim and PlanetSim.
Nevertheless, a more thorough study must be undertaken to study the feasibility
of such integration. A C++ implementation of PlanetSim could also study the
interoperability with NS [13] for example.

Another interesting feature of the simulator is to serialize to a file the full
state of a simulation. This can be used for example, to stabilize a huge overlay
network, serialize it, and later on begin the simulation from that point. This
feature is extremely useful for large simulations and saves valuable computing
time.

Finally, the Network can be replaced by a Network Wrapper. This wrapper
then assumes the tasks of the Simulator, and it routes incoming and outgoing

PlanetSim: A New Overlay Network Simulation Framework 131

Node’s messages using appropriate TCP or UDP connections on top of a real IP
network. It is also responsible for calculating the proximity metric between nodes
and to optimize the communication channels, disconnection events and specific
timeouts of the underlying IP network. The NetworkWrapper thus allows moving
unchanged simulated code to a real Internet testbed like PlanetLab. However,
note that Network Wrapper provides different methods than Network, it does
replaces completely the simulator in the interaction with nodes. NetworkWrapper
does not include simulate a method nor inherits or implements any Network
class. Also note than we are still working in the NetworkWrapper and much
work remains to be done at this point.

3 Validation

In order to validate the PlanetSim framework we have implemented two struc-
tured overlays (Chord and Symphony) and several overlay services and appli-
cations (Scribe and DHT applications). We believe that our results confirm the
generality, accuracy, and performance of our infrastructure.

Chord [11] is a classical structured ring-based topology that assures O(log n)
lookup hops with pointers (finger table) to log (n) nodes where n is the number
of nodes in the system. Chord’s lookup mechanism is robust in the face of node
failures and re-joins but it requires a periodic and costly stabilization protocol.

Our implementation of the Chord protocol aims to be close to MIT’s Chord
specifications and our results coincide with MIT published statistics. We however
use a 32-bit address space in this paper for performance reasons –although the
simulator can be configured to use a maximum of 160 bits–.

We also implemented the Symphony [12] overlay protocol in order to compare
a deterministic approach to routing (Chord) to a probabilistic one (Symphony).
Symphony is inspired by Kleinberg’s Small World model and constructs a ring
topology where each node has few long distance links. Symphony demonstrates
that with k = O(1) links per node, it is possible to route lookups with an average
latency of O(1/k log2 n).

Fig. 3. Chord vs Symphony lookup hops

132 P. García et al.

As we can see in figure 3, both algorithms scale gracefully with the increase
in the number of nodes. Obviously, Chord performs better as a result of a bigger
routing table and deterministic routing, but Symphony is less communication
intensive with a very small maintenance algorithm. Like published results, Chord
shows an average 1/2 log2(n) function and Symphony a log2

10 (n) function.
Furthermore, we have implemented and tested an efficient overlay broadcast

algorithm [3]. We obtained the awaited results where all nodes are covered in
the broadcast process and that no redundant messages are sent.

As example application, we present here the Scribe [1] application level mul-
ticast protocol. Scribe is a large-scale and decentralized event notification system
built on top of an overlay layer. The overlay layer, originally a Pastry network
[10], is used to maintain topics and subscriptions, and to build efficient multicast
trees. Scribe’s randomized placement of topics and multicast roots balances the
load among participating nodes.

Simulation results indicate that Scribe scales well. It efficiently supports
a large number of nodes, topics, and a wide range of subscribers per topic.
Hence, Scribe can concurrently support applications with widely different char-
acteristics. Results in our simulator also show that it balances the load among
participating nodes, while achieving acceptable delay and link stress. Besides,
implementing Scribe was straightforward by leveraging original FreePastry code
based on the common API. Our layered approach also permits to test the Scribe
algorithm in different overlays like Chord or Symphony. We do not show here
graphical results due to lack of space.

3.1 Performance

One of the main goals of the PlanetSim framework is to achieve good performance
for a high number of nodes. Due to the election of the Java language, we have
been forced to spend a lot of resources in profiling and optimizing the simulator
code. Besides, we have been faced with a constant compromise between clean
designs and performing code.

Examples of such optimizations in our code are an efficient MessagePool that
reuses messages, a custom Id class avoiding the Java’s BigInteger, and static
Singletons and Factories for loading Node, Message and Application types.

We run our experiments on 3 GHz (1 Gb RAM) Pentium 4 machines running
Linux 2.4.24. We measured the time and steps required to stabilize Symphony

Fig. 4. Chord vs Symphony stabilization time

PlanetSim: A New Overlay Network Simulation Framework 133

and Chord networks of different sizes. As we can see in Figure 4, Symphony
performs much better than Chord in simulation time.

Chord needs around 8 seconds to stabilize a 1000 nodes network, 16 minutes
for 1000 nodes and 46 hours for 100000 nodes. Symphony requires 2 seconds for
1000 nodes, 98 seconds for 10000 nodes, and 1.3 hours for 100000 nodes. Note
that the bars are shown in a base 10 logarithmic scale to improve visualization.
These results clearly show that the overhead imposed by the Chord stabilization
protocol is quite big compared to Symphony’s maintenance algorithms.

We believe that these numbers demonstrate the feasibility of using Planet-
Sim for large overlays. As future work, the distributed version of the simula-
tor can even permit simulation of much higher number of nodes in an overlay
network.

4 Related Work

First of all, we distinguish between network simulators and overlay simulators.
The formers provide packet-level simulation of network protocols (TCP, UDP,
IP, etc) over realistic Internet topologies. However, congestion-aware simulation
including packet-loss and queuing delays is costly, leading to inappropriate scal-
ing numbers for big overlays. Overlay simulators are usually more interested in
evaluating overlay algorithms and its routing behaviour without even taking into
account the underlying network layer. The excessive overhead and complexity
of network simulators thus imposes an unnecessary burden to overlay evaluators
and researchers.

For example, the NS [13] network simulator provides a standard framework
for accurate simulation of network protocols. NS is appropriate to simulate net-
works in the link, switching and transport layer but it is not aimed for application
level overlays. Besides, for smaller scale scenarios NS performs gracefully, but for
overlays over a hundred nodes in size suffers considerable scaling problems. An-
other example is the J-Sim [14] network simulation framework that follows a
component oriented approach. Similar to ns-2, J-Sim is a dual-language simu-
lation environment in which classes are written in Java (for ns-2, in C++) and
“glued” together using Tcl/Java. Being easier to use than Ns-2, J-Sim also lacks
enough scalability and performance for big overlays.

Other network simulators like SFFNET and OMNET++ have also been suc-
cessfully used for peer to peer applications. Particularly, OMNET++ provides a
rich environment that enables both packet-level simulations and high-level over-
lay protocols. Nevertheless, all these network simulators are mainly aimed for
packet-level protocols, and impose additional complexity to the user learning
curve.

In the end, many research groups have created their own overlay simulators,
sacrificing accuracy for scale. Examples of these include p-sim, FreePasty, Sim-
Pastry, 3LS, PLP2P, and SimPˆ2. In the field of structured overlays, one of the
pioneers is MIT’s pspsim. This simulator currently supports many protocols,
including Chord, Koorde, Kelips, Tapestry, and Kademlia. p2psim is protocol

134 P. García et al.

extensible, and it is pretty straightforward to develop new protocols by simply
implementing the join() and lookup() low-level methods. Despite its protocol
independence, p2psim provides no interface in order to simulate higher level ap-
plications. Besides, from the software engineering perspective, this simulator is
poorly documented and difficult to extend for different purposes.

FreePastry [10], the Java open-source implementation of the Pastry struc-
tured P2P protocol includes as well, the possibility to simulate applications on
top of this overlay network. As in PlanetSim, FreePastry provides a Common
API [2] to the applications built on top of it, thus making it very easy for devel-
opers to create and simulate complex distributed applications. Protocol specific
details remain hidden from the application-level point of view. However, FreeP-
astry is highly tied to the Pastry protocol, and it does not permit simulation of
its applications on top of other structured P2P protocols.

Another interesting approach is the one followed by MACEDON [9]. Mace-
don provides an infrastructure to ease development, evaluation, and iterative
design of overlay algorithms. Applications are built using a C-like scripting lan-
guage, and code is automatically generated for TCP/IP and ns [13]. Moreover,
it follows a standard API which does not tie applications to any specific overlay
network protocol. Large-scale emulation and evaluation tools are at the devel-
oper’s disposal as well. Macedon is not limited to structured P2P networks, and
it includes an impressive variety of protocols and applications such as AMMO,
Bullet, Chord, NICE, Overcast, Pastry, Scribe, and SplitStream. Furthermore,
MACEDON simplifies development of new overlays using a finite state machine
(FSM) model for defining overlay protocols.

MACEDON is a very nice tool for overlay simulation but it follows a com-
pletely different approach than PlanetSim. MACEDON is mainly related to
Domain-specific languages (DSLs) that generate functional code from domain
specific representations. Besides, MACEDON currently supports only two types
of overlays: distributed hash tables and application level multicast. We have cre-
ated a layered and modular framework that is extensible at all levels, and that
can even be integrated with other frameworks. DSLs like MACEDON are not
designed to be extensible but instead to provide all possible functionalities and
vocabularies in the domain language.

5 Conclusions and Future Work

We have presented the PlanetSim overlay simulation/experimentation frame-
work that facilitates design and implementation of both overlay algorithms
and overlay distributed services. PlanetSim has been carefully designed to pro-
vide clean hotspots that make the framework extensible at all levels. Exten-
sibility and external integration is a main goal of our framework because we
believe that it is quite difficult to offer all the services that overlay researchers
require.

Furthermore, our adoption of FreePastry’s object oriented implementation of
the Common API for structured overlays is a key aspect to ease the transition

PlanetSim: A New Overlay Network Simulation Framework 135

from simulation code to network code and vice versa. Unlike other simulators,
we clearly distinguish between overlay algorithms (key based routing), and the
applications and services built on top of them. Another side benefit of this design
decision is that we can easily leverage FreePastry application code like Scribe
and others.

We believe that PlanetSim can be used in peer to peer research settings but
also as an educational tool to better understand overlay algorithms and services.
Besides, the Network Wrapper code permit users to easily test their designs over
the Internet using existing infrastructures like PlanetLab.

Of course, and like many other frameworks, PlanetSim can fail to attract
users and developers in the research and educational settings. There is now a
big inertia in the research arena towards custom-made simulators that solve
particular problems. This is sad because it avoids clear comparisons in a unified
platform. Besides, the framework cannot acquire critical mass without external
contributors delivering new algorithms and services.

We however plan to extend the framework to incorporate new services and
algorithms in the short term. We outline an improved overlay visualization engine
for overlay networks and services, and a distributed version of the simulator
enabling simulation of huge number of nodes (0,5M to 1M). PlanetSim is an
open source project that is being actively used in our University for research
and educational purposes. We welcome future collaborations or extensions to
the project. PlanetSim is available with full source code and GPL license in
http://ants.etse.urv.es/planet.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and
Technology through project TIC-2003-09288-C02-00.

References

1. Castro, M., Druschel, P., et al, “Scalable Application-level Anycast for Highly Dy-
namic Groups”, Proc. of NGC’03, September 2003.

2. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., and Stoica I., “Towards a
Common API for Structured Peer-to-Peer Overlays”, 2nd International Workshop
on Peer-to-Peer Systems, IPTPS’03, Berkeley, CA, February 2003.

3. El-Ansary, S.; Alima, L.O.; Brand, P.; et al. “Efficient Broadcast in Structured
P2P Networks”, 2nd International Workshop on Peer-to-Peer Systems, IPTPS’03,
Berkeley, CA, February 2003.

4. Gummadi, K., Saroiu, S., et al., “King: Estimating latency between arbitrary Inter-
net end hosts”, Proceedings of the 2002 SIGCOMM Internet Measurement Work-
shop. Marseille, France, November 2002.

5. Medina, A., Lakhina, A., Matta, I., et al. “BRITE: An Approach to Universal
Topology Generation”, Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MAS-
COTS 2001). Cincinnati, Ohio, August 2001.

136 P. García et al.

6. Pairot, C., García, P., Gómez Skarmeta, A.F., “DERMI: A Decentralized Peer-to-
Peer Event-Based Object Middleware”, Proceedings of ICDCS’04, Tokyo, Japan,
pp. 236-243.

7. Pairot, C., García, P., Gómez Skarmeta, A.F., “Dermi: A New Distributed Hash
Table-based Middleware Framework”, IEEE Internet Computing, Vol. 8, No. 3,
May/June 2004, pp. 74 – 84.

8. PeerSim Peer-to-Peer Simulator. http://peersim.sourceforge.net/
9. Rodriguez, A., Killian, C., Bhat, S., et al., “MACEDON: Methodology for Auto-

matically Creating, Evaluating, and Designing Overlay Networks”, Proceedings of
the USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI 2004), March 2004.

10. Rowstron, A., and Druschel, P., “Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems”, IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pp. 329-350, November 2001.

11. Stoica, I., Morris, D., Karger, D., et al. “Chord: A Scalable Peer-to-peer- Lookup
Service for Internet Applications”, Proceedings of the ACM SIGCOMM 2001, San
Diego, CA, August 2001, pp. 149-160.

12. Singh, G.M., Bawa, M., Raghavan, P. “Symphony: Distributed Hashing in a Small
World”. Proceedings of USITS’03, Seattle, WA.

13. The Network Simulator – ns – 2. http://www.isi.edu/nsnam/ns/
14. J-Sim. http://www.j-sim.org/

Towards the Development of
Ubiquitous Middleware Product Lines

Sven Apel and Klemens Böhm

Department of Computer Science,
Otto-von-Guericke-University Magdeburg

{apel, kboehm}@iti.cs.uni-magdeburg.de

Abstract. Ubiquitous computing is a challenge for the design of middle-
ware. The reasons are resource constraints, mobility, heterogeneity, etc.,
just to name a few. We argue that such middleware has to be tailored
to the application scenario as well as to the target platform. Such tailor-
made middleware has to be be built from minimal fine-grained com-
ponents, and the system structure must be highly configurable, as we
will explain. We propose to use the well-known mixin layer approach
to build the flexible lightweight middleware envisioned. We show that
the thoughtful use of mixin layers is promising in this specific domain
and allows to deal with issues such as device heterogeneity and re-
source constraints. To do so, we present the design and implementation
of a middleware and three configurations derived from it. Our evalu-
ation criteria are the number of supported features and the memory
footprint. The middleware configurations derived perform well in these
respects.

1 Introduction

Ubiquitous computing [26] is becoming reality. Everyone is connected every-
where and at any time, to consume and provide information. Computers be-
come more and more transparent [25]. Middleware plays a key role to let this
vision become true. It supports the application programmer who builds dist-
ributed applications and services, e.g., for electronic health care or intelligent
buildings (more examples in [26, 25]). Such middleware must deal with the vari-
ous characteristics of ubiquitous computing scenarios, e.g., resource-constrained
devices, heterogeneity, mobility, bandwidth fluctuations, connection interrup-
tions. Conventional middleware is not sufficient in these respects. It targets
at static distributed systems with fixed hosts where resources are not tightly
constrained.

This article attempts to validate the following hypothesis: the combination
of software engineering and distributed computing principles will support the
development of advanced ubiquitous applications, middleware services etc. well.
To do so, we focus on the resource constraints of partly mobile ubiquitous de-
vices, e.g. cell phones, wearable microchips, smart cards, autonomous robots,

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 137–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 S. Apel and K. Böhm

sensors, actuators, etc., and their heterogeneity in terms of hardware (e.g. pro-
cessor, memory, communication media) and software (e.g. operating system, net-
work protocol). We present a flexible middleware which one can easily port to
different hardware and software. It provides a device-independent interface to
applications. As the design and implementation method, we propose the mixin
layer approach. Mixin layers are known as one method for the implementation
of product-line architectures (PLA) [22, 1]. Middleware for ubiquitous computing
should benefit from the PLA concept as well, in terms of configurability, reusabil-
ity and extensibility. By deploying the mixin concept, we want to verify if this is
indeed the case. More generally, we wonder if implementation of general middle-
ware concepts in mixin layers is feasible. The answer is not obvious because some
concepts are known as crosscutting concerns, or are formulated in an abstract,
’high-level’ manner. Further, are mixin layers a good implementation method for
middleware that one can easily port to other devices? To address these issues,
we have designed and implemented a middleware PLA1 presented here. We then
describe three middleware configurations which are tailored2 to fit three specific
ubiquitous application scenarios. We do so to show that our approach can lead
to flexible lightweight middleware for ubiquitous computing. The derivation of
these configurations consists of only a few steps. This is not straightforward –
only the thoughtful use of mixins and the careful deployment to the middleware
domain results in such ease. If one designs the layers carefully such that there are
only few fine-grained device-specific layers, portability is much easier. Further,
we investigate the relationship between the memory footprints of the configura-
tions and the number of features integrated: We observe that few features result
in a small footprint. As a result, configurability of middleware does not neces-
sarily collide with small footprint. This is an important finding because other
approaches cannot provide such a degree of configurability in combination with
small footprint, as Section 6 will explain. Finally, we say why these results can
be generalized to other middleware.

This article is structured as follows: Section 2 introduces an ubiquitous com-
puting application scenario and points to problems regarding middleware and
applications. Section 3 reviews the software engineering methods deployed here.
Section 4 presents our middleware, built according to the mixin layer approach.
We then discuss implementation results and experiences concerning the configu-
ration. Section 6 reviews related work. Finally, we conclude.

2 A Ubiquitous Computing Application Scenario

This section sketches an application scenario for ubiquitous computing. Based
on this, we list challenges at the middleware and the application level. We point
to the weaknesses of conventional middleware approaches.

1 In the remaining article, ’middleware’ and ’middleware PLA’ are synonyms.
2 We refer to tailoring as configuration process with special focus on memory footprint.

To do so, unneeded functionality is removed consequently.

Towards the Development of Ubiquitous Middleware Product Lines 139

2.1 Application Scenario

With ubiquitous computing, computers become an even more integral part of
everyday life. They act behind the scenes, transparently for humans. The scenario
presented, in parts borrowed from [25], includes conventional aspects as well
as more visionary ones. Starting point is a room with many common mobile
and ubiquitous devices, e.g., PDA and Smartphones. They are general-purpose
devices which include various communication media, e.g., WLAN, Bluetooth,
IR, etc. If a person enters the room, the PDA can contact the embedded devices
available. For instance, the PDA can communicate with the light switch to raise
or dim the light. To facilitate this, the dimmer offers an appropriate service
interface. A primitive dimmer only provides a basic service to dim or light up. A
more complex dimmer can provide additional information about the minimum
and maximum dim level or provide a timeout mechanism to adjust the light
automatically. A ’more ubiquitous’ scenario is that the light dimmer adjusts
itself by communicating with the PDA behind the scenes. A person enters the
room, and the light adjusts itself, using personal information from the PDA.
Other devices in the room act more autonomously, e.g., a climate-control unit
which adjusts the air condition to the current climate, to the current time of day
and the current season as well as to the presence of a person. Further, think of
a digital paper scrap which people use to take notes. Notes are then stored on
a central notes server. A more common device is a home-entertainment system,
including a music box, a dvd recorder and a TV set. It apparently provides a lot
of controllable functionality and interacts with itself and the PDA extensively.
For instance, it provides information on the TV program. This information can
control the programming of the dvd recorder. In a more ubiquitous setting, the
dvd recorder reacts to program changes or records telecasts which match a profile
autonomously. The next step is that the dvd recorder in cooperation with the
TV set learns the customs of persons and generates personal profiles itself.

2.2 Problems Occurring

In the scenario introduced, certain problems occur, which we describe next.
Common middleware cannot deal with these problems, as we will explain.

Ubiquitous computing middleware must run on the various devices. Fre-
quently, devices are embedded systems. They are developed for a special purpose,
e.g., to control the light, and have a low resource consumption. Cost-effective
thinking requires this, in particular if the number of these devices is huge. Next to
these embedded special-purpose devices, general-purpose devices (PDA, Desktop
PC, Server) are part of ubiquitous-computing scenarios. These devices are not
resource-constrained and provide much more functionality. In our scenario, the
PDA communicates with other devices, displays information (e.g., air-condition
level) and processes it (e.g., television-program based programming of the dvd
recorder). The spectrum of resources consumed is extremely broad, as well as
the one of functionality provided.

Another challenge is to overcome the heterogeneity of devices. They use dif-
ferent hardware and software. The middleware must bridge them and must pro-

140 S. Apel and K. Böhm

vide a well-defined device-independent interface to the application programmer.
Hence, the middleware consists of device-specific and device-independent parts.
Naturally, the device-independent part must be as large as possible (in relative
terms) to maximize reusability.

Our middleware is supposed to hide these specifics, in order to support the
development of ubiquitous applications. Conventional middleware approaches,
e.g., CORBA, DCOM, Java-RMI, are not suitable for our scenario. They are too
heavyweight and cannot be customized to application requirements. It would be
quite impossible to port them to other devices or platforms and to get them
to work in resource-constrained environments. The monolithic system structure
prevents the reuse of logical device-independent functionality. However, research
effort has tried to improve standard CORBA to fit ubiquitous computing. It has
been shown that refactorization of CORBA implementations yields higher config-
urability [27]. However, our expectation in the long run is that customizability
of carefully designed middleware product-lines is even higher. This is why we
think that the issue merits attention. Finally, dynamic adaptation [20, 12] does
not solve the problem in our specific context either, as Section 6 will explain.

All this motivates the design of a ubiquitous-computing middleware with the
following features:

– minimal memory footprint and lightweight implementation, to save resources,
– run on heterogenous hardware and software,
– provide uniform device-independent application interface,
– customizability, reusability, and extensibility.

3 Relevant Software Engineering Issues

This section presents our solution to the problems discussed in Section 2. It uses
the mixin layer approach. This is because this approach is known to facilitate
configurable and reusable software, e.g., product-line architectures [22]. To ease
understanding, we provide some background information on this software en-
gineering method. The so-called collaboration-based design is a feasible design
method to serve as a basis for mixin layer implementations. We briefly review
it here as well. Finally, we outline the expected benefits of these approaches for
ubiquitous computing, before looking at our realization in the next section.

3.1 Collaboration-Based Design

Parnas [19] introduced collaboration-based design first. The idea is to build
software incrementally, using minimal building blocks and starting from a mini-
mal base. Exchanging, adding and removing such building blocks, also called
layers, yields reusability, extensibility, and customizability. Batory et al. have
mapped this concept to the object-oriented world [1, 22]. They observe that a
new software feature often extends or modifies numerous existing classes. Based
on this observation, they perceive features as collaborations of class/object frag-
ments, also referred to as roles. Figure 1 collaborations. Classes are arranged

Towards the Development of Ubiquitous Middleware Product Lines 141

Fig. 1. Stack of collaborations

vertically (c1 – c3). Collaborations are
arranged horizontally and span several
classes (f1 – f3). Several features of a
software system result in a stack of col-
laborations. In our context, examples
of features are ’remote procedure calls’
or ’remote object invocation’. Collabo-
rations with the same interfaces are easily exchangeable. They are an in-
stance of large-scale components [1]. A collaboration of objects implements a
feature and is part of a layered stack.3

3.2 Mixin Layers

The mixin layer approach allows to implement collaboration-based designs. The
mixin layer approach is based on the GenVoca component model [1] to support
large-scale components, easy exchangeability, and syntactic consistency checking.
These characteristics allow for the development of configurable and reusable
software. Different languages can be used to implement mixin layers: C++ [23],
AHEAD Tool Suite [2], Java Layers [7], Sather [17]. In the code snippets that
follow we use the C++ notation.

Mixins are types whose super-types are specified parametrically [5]. Mixins
facilitate the same sub-type specialization to be applied to different (super-)-
types. In other words, they allow the specialization of multiple classes with a
single reusable class. For example, think of the three unrelated classes Buffer,
Message, Printer. Suppose that one wants to add a locking feature that restricts
access to these objects. With conventional object oriented approaches, one must
add a different sub-type to each class, e.g., LockableBuffer, LockableMessage,
LockablePrinter. Each of these types adds the methods lock() and unlock().
With mixins in turn, a single mixin Lockable extends all of those super-classes
(see Figure 2). Methods lock() and unlock() are defined only once. Instan-
tiation of mixins generates new class hierarchies. For instance, the instantia-
tion Lockable<Buffer> lb; generates the class hierarchy depicted in
Figure 3.

3 We use the terms feature or layer as synonym for collaboration.

Fig. 2. A simple mixin class for synchronization
support.

Lockable

Buffer

m_locked : bool

unlock() : void
lock() : void

Fig. 3. A lockable buffer

1 template <class BaseType >
2 class Lockable : public BaseType {
3 bool m_locked;
4 void lock () { m_locked = true;}
5 void unlock () { m_locked = false ;} }

142 S. Apel and K. Böhm

Mixin layers are mixins containing nested types which can be mixins them-
selves [22]. Mixin layers are used to coordinate changes and extensions to classes
that collaborate. The mixin layer approach allows to add a new feature/layer
in form of a set of sub-classes to a software system using one implementa-
tion unit. A single mixin layer is able to implement a feature that crosscuts
multiple classes. Mixin layers are equivalent to collaborations, whereas nested
mixins are equivalent to object roles. Consider the following example: A pro-
gram library provides a buffer to store data elements and an iterator to tra-
verse the data elements. A possible refinement is to store and manage arrays of
data elements. Applying this new feature requires modifications of both buffer
and iterator. Figure 4 depicts the two mixin-based feature implementations
BufferLayer (Lines 1–4) and ArrayBufferLayer (Lines 5–8). The BufferLayer
simply consists of a Buffer class and an Iterator class. ArrayBufferLayer is
a mixin layer, which expects a template parameter (BaseType). Line 10 con-
tains the instantiation of ArrayBufferLayer using BufferLayer as super-type.
This instantiation connects both layers and their corresponding nested types
(Buffer, Iterator) using inheritance (Lines 5–7). It refines the basic buffer
abstraction with the array feature. This feature crosscuts the classes Buffer
and Iterator. The ’Array’ feature is encapsulated in a single implementa-
tion unit. This eases the composition of mixin layers and therefore the con-
figuration of the target software. To see this, think of ten further buffer fea-
tures, e.g. locking, synchronization, complex data types. Composing the buffer
implementation using these mixin layers requires only one instruction, e.g.,
Lockable<Sync<...<ArrayBufferLayer<BufferLayer>>...>>buf;. This exam-
ple illustrates the ease of configuration of mixin layer-based implementations.
(more examples in [1, 22, 2])

3.3 Benefits for Ubiquitous Computing

Mixin layers offer several benefits for the development of middleware for ubiqui-
tous computing. As mentioned before, this article focuses on resource constraints
and heterogeneity.

Fig. 4. A base and a mixin layer: the buffer abstraction and array management feature

1 class BufferLayer {
2 class Buffer {}; // store simple data types
3 class Iterator {}; // traverses element−wise
4 };
5 template <class BaseType > class ArrayBufferLayer : public BaseType {
6 class Buffer : BaseType :: Buffer {/∗ stores arrays of elements ∗/}
7 class Iterator : BaseType :: Iterator {/∗ i t erates array−wise ∗/}
8 }
9 ...

10 ArrayBuffer <Buffer > abuf;

Towards the Development of Ubiquitous Middleware Product Lines 143

Resource Constraints. Mixin layers offer modularity and flexibility and thus seem
to be ideal candidates for the design and implementation of tailored software for
ubiquitous computing. To accomplish this, the system components (the mixin
layers) must be fine-grained. Middleware must be customized to the specific
hardware and to the requirements of the application, e.g., performance.

Heterogeneity. Another issue is the heterogeneity of the devices involved. The
objective of our middleware (as well as of other middleware) is to bridge this
heterogeneity and to provide components which can work with different hard-
ware, operating systems and network protocols. How can mixin layers help in
this respect? An interesting feature of mixin layers in the middleware domain, for
heterogeneous environments, is decomposition of middleware functionality into
device-specific and device-independent components. The goal is to minimize the
number of device-specific components. This leads to middleware which is easier
to port to new platforms. Summing up, the thoughtful use of mixin layers seems
to be promising to deal with heterogeneity in ubiquitous computing.

In summary, mixin layers might help to address the following issues in ubi-
quitous computing where common middleware solutions are not sufficient:

– resource constraints (step-wise refinements, minimal exchangeable layers)
– heterogeneity (composition of device-specific and device-independent layers)
– lack of customizability (mixin layer as large-scale components, separation of

crosscutting concerns)

Admittedly, the mixin layer approach also has some disadvantages: It is not
always practical to implement a feature as a single mixin layer. The implementa-
tion units of such features are often spread over several other feature implemen-
tations. Mixin layers only allow to refine related classes, namely those included
in the stack of basic layers. Related approaches like aspect-oriented programming
(AOP) [13] and multi-dimensional separation of concerns (MDSC) [18] can refine
unrelated classes as well, using one implementation unit. AOP and MDSC sup-
port refinements on statement and expression level as well as a regular-expression
based mechanism to specify code positions where refinements are applied (join
points). On the other hand, they lack a component model, e.g., imported and
exported interfaces or symmetric components. Hence, it is difficult to build con-
figurable product-lines. The mixin approach in turn is sufficient for building the
base functionality of our middleware, as we will explain in Section 4. In gene-
ral the approaches mentioned are equivalent with regard to modularization of
crosscutting concerns and customizability [2]. In the long run, we think that
only a combination of these will lead to success, if more complex functionality is
added, e.g., fault-tolerance or security. Each feature will be implemented using
the appropriate method. However, these issues are beyond the scope of this pa-
per. This paper in turn investigates the benefits and limits of mixin layers to
build middleware product-lines.

144 S. Apel and K. Böhm

4 Middleware Design

This section presents the design and implementation of a flexible lightweight
middleware for ubiquitous computing, based on collaborations and mixin layers.
To assess the benefits of these methods, the implementation of the following
functionality should suffice: The middleware provides standard remote object in-
vocation (ROI). Well-known subconcepts of ROI, e.g., marshaling, are part of
the implementation, but are not discussed here. Moreover, we leave ubiquitous-
computing specific features, e.g., server-initiated computation. Their implemen-
tation would not provide significant further insight (we argue). Our concern
is the deployment of collaborations and mixin layers for ubiquitous middle-
ware. Arguably, implementation of middleware functionality in mixin layers is
not obvious. In addition, a solution must cope with devices that are resource-
constrained and with heterogeneous environments. Our design described next,
i.e., the specific arrangement of collaborations or the specific choice of the roles,
is only one possible solution (but nevertheless appropriate, as we will show).

The result of collaboration-based design and of the mixin layer approach is
a set of components. They can be composed to various middleware platforms.
Subsequently, we refer to these platforms as configurations. When designing our
middleware, we have found it natural to distinguish between components with
client-side functionality and those with server-side functionality. The feature of
managing and registering remote objects is server-side, but only the client sends
requests to the server, to give some examples. Moreover, we identified some
features used by client and server. This motivates the following terminology:
general layers, client layers and server layers.

Several figures depict the collaboration/layer stack and the roles included.
The rounded boxes represent roles (the dashed boxes mark derived roles) and
the grey boxes in the background represent the collaborations. We organized
the stack of layers in bottom-up order. We use UML-like arrows to represent
relations between object roles (inheritance, composition, etc.). Explaining all
roles in detail is beyond the scope of this article and is actually not necessary
for understanding. We focus on the overall structure, and we say how to design
collaborations and to implement mixin layers for ubiquitous middleware.

4.1 General Middleware Layers

The general layers provide basic functionality for both client side and server side.
Figure 5 depicts the stack of general layers. The abstraction of basic messages
form the bottom layer of the stack. These messages are transferred between
client and server. A marshaling mechanism serializes messages; connections are
based on sockets. Messages may have parameters that are typed. The parame-
ters are used in higher layers as function arguments or to identify operations and
instances on clients and servers. Our approach allows to decide at compile-time
which data types are supported. Avoiding types that are not needed reduces the
memory consumption. Other variation points, again well known, are the connec-
tion type (UDP or TCP), the direction of communication (unidirectional or bidi-

Towards the Development of Ubiquitous Middleware Product Lines 145

rectional) and the synchronization strategy (synchronous or asynchronous). The
variation points as well as the different data types supported are implemented
as different layer variants to enhance configurability. For instance, two different
layers exist for the synchronization feature (synchronous and asynchronous). At
configuration time, the programmer has to choose one.

4.2 Client-Side Layers

Based on the general layers, the client layers facilitate uni- and bidirectional mes-
saging (see Figure 6). We use these messaging functions to implement remote
function and class-function calls and remote object invocation. We use parame-
terized messages to deliver the identifications of functions, classes, objects and
their arguments. Response messages deliver results. Next to function calls, we
provide operations for creating and deleting objects.

4.3 Server-Side Layers

Figure 7 shows the server-side layers, but does not show all roles, due to space
limitations. The server layers are shown as light grey boxes, the client layers
as dark grey boxes. Client and server layers that correspond to each other are
often required in combination, e.g., remote function calls and remote functions.

Connection

Connection

Connection

Message
Abstraction

Message
Connection

Direction
Separation

Parameterized
MessageMarshalable

TypedConnectionParamConnectionMessage

ConnectionConnection
MarshalableConnectionMessage

MarshalableBaseMessageBase

InMessage OutMessage Marshalable
TypedConnection

Marshalable
TypedConnectionSynchronisation InMessage OutMessage Synchronization

Fig. 5. The stack of general middleware layers

OneWay OutMessageInMessage

TwoWay InMessage OutMessage

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Connection

Connection
Unidirectional
Messages

Bidirectional
Messages

Remote
Function Calls

Remote Class−
Function Calls

Remote Object
Invocation

Connection

Connection

TwoWay OneWay
ClassCall ClassCall Synchronisation InClassMsg OutClassMsg

Synchronisation

TwoWay OneWay
FunctionCall FunctionCall Synchronisation OutFunctionMsgInFunctionMsg

SynchronisationOneWay

TwoWay OneWay
ObjectCall ObjectCall Synchronisation InObjectMsg OutObjectMsg Connection

Fig. 6. The stack of client-side layers

146 S. Apel and K. Böhm

This interleaving does not mean that a server implementation always requires
the client layers and vice versa. If a configuration does not need certain client
layers, one has to remove them during the configuration process (cf. Section 5).
Consider the light dimmer from Section 2. It only needs to obtain incoming
function calls, but does not need to issue remote function calls.

The basic server layers listen for client requests and accept connections. We
have implemented a single-threaded and a multi-threaded variant. Our middle-
ware deserializes incoming messages. Depending on the connection type chosen,
the incoming messages are transferred using byte streams or datagrams. Based
on these mechanisms, the server side provides a remote function server, a re-
mote class-function server, and a remote object server. The programmer can
use several functions for registering and managing remote functions, classes and
objects. A client can specify the desired function or object as well as the desired
operation (create, delete, invocate) using parameterized messages.

4.4 Implementation

In order to verify our hypotheses, we have implemented the middleware design
presented so far in full (in C++). To do so, we have used the template mecha-
nism, nested classes and parameter-based inheritance, as described in Section 3.
To save implementation work, we use the gSoap communication library [10].
While designing and implementing the system, we have kept in mind that the
communication library should be easily exchangeable, e.g., with a lightweight
binary protocol. We have used the low-level functions only to (un-)marshal and
to send or receive SOAP [4] messages. We have not used remote-function-call
mechanisms or other high-level functions. gSoap is the only device-dependent
part of our middleware. Because space is limited, we cannot discuss all issues at

Synchronisation

SynchronisationOutClassMsg

SynchronisationOutFunctionMsg

SynchronisationOutMessage

Remote
Object Server

Remote Class−
Function Server

Remote Function
Server

Synchronisation

Connection
Accept

FunctionServices
OfferSynchronisation

Connection
Accept Offer

ClassServicesSynchronisation

Connection
AcceptSynchronisation Offer

ObjectServices

Remote Function
Calls

Function Calls
Remote Class−

Remote Object
Invocation

OutObjectMsg

Connection
AcceptOutMessage

Connection
Accept Server

CallSynchronisationOutMessage

Server
FunctionCallOutFunctionMsg

Server
ClassCallOutClassMsg

Server
ObjectCallOutObjectMsg

Server Call

Accept Connections

Synchronization

Fig. 7. The stack of server-side layers

Towards the Development of Ubiquitous Middleware Product Lines 147

Fig. The Remote Object Invocation Mixin Layer

code level. Instead we refer to Figure 8. It depicts the interface of one mixin layer,
the roi layer in C++. The layer has four nested classes (Lines 2–3) which repre-
sent the corresponding roles (cf. Figure). Each nested class inherits from the
corresponding classes of the base layer, represented by BaseLayer. Beyond the
short example the implementation examples from Section 3 and the discussion
of design issues there should shed light on our implementation.

5 Results

This section discusses experiences from the implementation, together with three
configurations: a sensor-actuator-system, a web service/client and a roi client/-
service. They are useful for the scenario described in Section 2.

5.1 Configuration

Instantiation (combination) of the mixin layers configures new middleware plat-
forms (see Section 3). A GenVoca grammar describes the possible configurations
[1] (not shown here for lack of space). Using this grammar, we have calculated
the number of configurations possible by adding the numbers of all combinations
of layers of our middleware permitted: 192 ∗ (2n − 1) different server configura-
tions, where n is the number of data types supported, and 96 ∗ (2n − 1) client
configurations. As a result, the degree of configurability is high. This is required
for tailoring the middleware to work in ubiquitous computing scenarios.

To convey the ease of the configuration procedure and the flexibility of the
implementation, we now describe the three configurations we have derived.

Sensor-Actuator Middleware. A sensor-actuator middleware is useful for ubi-
quitous devices like the our light dimmer, which only needs a small subset of
the functionality. For communication between sensors and actuators, we chose
asynchronous unidirectional remote procedure calls. In our scenario, a light sen-
sor only needs the client features. We add the server-side features only to the
actuators (a light dimmer), which receive messages. Figure 9(a) depicts the fea-
tures chosen. In our example application, we have used the sensor to send a
measurement to the actuator. Both devices display status information.

Remote-Object-Invocation Middleware. Our configuration of a remote-object-
invocation (roi) middleware consists of nearly all layers implemented. It is used
for ubiquitous devices which provide a rich set of functionality and provide many

8.

8

1 template <class BaseLayer > class ROILayer : public BaseLayer {
2 class OutObjectMessage : BaseLayer :: OutClassMessage {};
3 class InObjectMessage : BaseLayer :: InClassMessage {};
4 class OneWayCall : BaseLayer :: OneWayCall {};
5 class TwoWayCall : BaseLayer :: TwoWayCall {}; };

148 S. Apel and K. Böhm

services. In our scenario, the home entertainment system runs a fully functional
object server. Next to remote object invocations, remote function calls and re-
mote class-function calls are also available. We have chosen synchronous com-
munication. Figure 9(b) depicts the layers of the client and of the server. To
complete the proof-of-concept implementation, we have implemented a simple
service on top of the roi-middleware.

Web-Service Middleware. The web-service (ws) middleware supports the imp-
lementation of web services. This configuration is useful to access ubiquitous
devices from the internet using SOAP [4]. Similarly, ubiquitous information sys-
tems like a digital newspaper can collect information from the Web and dis-
play it. The web-service middleware provides the following functionality: SOAP-
conformant remote function calls as well as synchronous and asynchronous com-
munication. When using gSoap, creating SOAP messages that conform to the
standard is easy. Our web-service middleware is useful to implement all types of
web-services and corresponding clients. Our example server can receive SOAP
messages and can reply to every common SOAP client with the same interface.
The analogous is true for our client as well. It can connect to any compatible
web service. Figure 9(c) depicts the layers of the client and the server.

5.2 Discussion

Section 5.1 has shown that a broad range of configurations is possible. More-
over, Sections 3 and 5.1 have discussed the easy composition of layers to create
a configuration. Some configurations may differ only in a few features. But the
three examples show the broadness of the application scenarios supported. Let
us now have a closer look at the resulting configurations. Figure 10 shows the
memory footprint and the number of features supported, with a distinction bet-
ween client-side and server-side. The memory footprint is the size of the binary
code. We have obtained it using the linux size command. We have left aside the
code of the underlying communication protocol library. The ws client is bigger
than the roi client because it has to process and transfer additional web-service-
specific information like namespaces, etc. The binary code size of clients ranges
from 4423 to 6631 bytes and the one of the servers from 9310 to 32738 bytes.
The server-side results show that the memory footprint of a minimal system
configuration (the actuator) is only 28% of the one of the maximal system con-

resources is easy, using the mixin layer approach. As our implementation has
shown, decomposition of middleware functionality into fine-grained components
is possible (cf. Figure 9). With less features, the code size and the amount of data
and consequently the binary code size decreases significantly (see Figure 10). So
it is in the hand of the application programmer to tailor the middleware and
fit it to the application requirements and target platform. Configurability and
tailoring make it possible to build middleware for embedded ubiquitous devices.

than the roi service. As a result, configuring middleware that does not waste

figuration (the roi server). At the client side, the minimal configuration is about
65%. The binary code size of the web service lies between them. This is because
it has more features than the sensor-actuator middleware and much less features

Towards the Development of Ubiquitous Middleware Product Lines 149

To deal with hardware and software heterogeneity, we differentiate between
device-specific and device-independent layers. Only the layers which communi-
cate directly with the hardware or the underlying software (operating system,
protocol stack) are device-specific.

The reader should note that a performance analysis is not meaningful in
the current context, for various reasons: (1) We have used a SOAP-based com-
munication library. The overhead for parsing and generating the XML/SOAP
messages would falsify performance numbers. (2) A direct comparesion to other
middleware solutions, e.g. [11, 24, 16], is not meaningful, because the set of fea-
tures implemented (communication protocol, marshaling strategy, data types
supported, etc.) is different. – The design of mixin layers that results in configu-
rations both with small footprint and good performance is an interesting issue,
but is beyond the scope of this article (obviously, the problem is more difficult).

Finally, our results generalize to other middleware as well, not only in the
ubiquitous computing domain. For example, one can build middleware for mo-
bile computing using more large-scale components, to reduce the maintenance

(a) sensor-actuator (b) roi (c) web service

Three different middleware configurationsFig. 9.

configuration size [byte] features
sensor 4420 6
actor 9406 9

roi-client 6302 10
roi-server 32834 15
ws-client 6727 7
ws-server 11707 10

ws−client

sensor
roi−client

actor
ws−server

roi−server

 0

 5000

 10000

 15000

 20000

 25000

 30000

 4 6 8 10 12 14 16 18

si
ze

 [
by

te
]

number of features

 0

 5000

 10000

 15000

 20000

 25000

 30000

 4 6 8 10 12 14 16 18

si
ze

 [
by

te
]

number of features

clients
servers

Memory footprint and number of features of three configurationsFig. 10.

150 S. Apel and K. Böhm

overhead. Reflective architectures like [20] or [12] could be implemented using
mixin layers and could work together with current base level components. How-
ever, reconciliation of the objectives performance, small memory footprint, as
well as configurability, reusability and extensibility is an open issue.

6 Related Work

Conventional middleware technology (e.g. CORBA, SOAP, Java-RMI) hides the
internal communication. It is designed primarily for fixed hosts with adequate re-
sources and a static network structure. It does not run in non-conventional appli-
cation scenarios, e.g., embedded systems and ubiquitous computing. Middleware
technologies have emerged to meet the requirements of these scenarios, e.g., real-
time constraints, reliability, as well as environment-specific issues, e.g., resource
constraints, bandwidth fluctuation, connection interrupts, dynamic changes of
network topology. However, some research has enhanced CORBA-based middle-
ware to become flexible, customizable and lightweight: OpenCorba [15],
OpenORB [3] and dynamicTAO [14] extend CORBA by a reflective architec-
ture. These systems reify important characteristics of the behavior and of the
structure of the middleware, such as scheduling strategy and resource manage-
ment. The application can access and modify this information using a meta-
interface. This allows to customize the middleware at runtime. A similar reflec-
tive CORBA-independent approach is CARISMA [6]. Its focus is on context-
awareness and on policy conflict resolution. We for our part have focused on
customizability at compile-time. By doing so, we do not need a reflective ar-
chitecture which would consume a significant amount of resources (we argue).
Furthermore, reflection is simply not needed in all ubiquitous devices and ser-
vices. (Think of the primitive light dimmer.) On the other hand, mixin-based
middleware may serve as a basis for a runtime-adaptable implementation, which
combines the advantages of mixin layers and reflection.

UIC [20] and ReMMoC [12] are two examples of middleware with a focus on
device heterogeneity. Both assume that different devices use different middleware
technologies, e.g., SOAP, CORBA, Java RMI, and provide mechanisms to deal
with this heterogeneity. UIC is based on dynamicTAO. It implements a reflec-
tive architecture and a minimal core of functionality. If the reflective architecture
detects the presence of a remote device, it loads the adequate middleware compo-
nent. ReMMoC uses a similar approach. While this is a significant contribution
for conventional application scenarios, it seems to us that the runtime overhead
of reflection may not always be acceptable in ubiquitous devices. Further on,
reflection may not be required in some ubiquitous application scenarios.

TAO [21] is another prominent approach to achieve customizability, based
on design patterns. We believe that modern component models have a stronger
focus on modularization and configurability than design patterns. Moreover, the
mixin layer approach supports the development of PLA well [2]. It is the high
degree of configurability and tailoring that makes PLA a suitable candidate for
the development of ubiquitous computing middleware.

Towards the Development of Ubiquitous Middleware Product Lines 151

Zhang and Jacobsen have shown how to improve customizability and flexi-
bility of middleware by refactorization [27]. They utilized AOP to remodular-
ize orthogonal, entangled middleware features, e.g., the dynamic programming
model or portable interceptors. Colyer and Clement argue that AOP can help to
cope with the rising complexity of middleware [8]. They have refactored several
middleware crosscutting concerns successfully. They have argued that AOP can
scale to size of commercial middleware projects. Our approach towards building
a product-line does not focus on refactoring. Rather a carefully planned and
designed middleware product-line makes refactoring unnecessary.

[24, 11, 16, 9] focus on middleware for embedded and real-time systems. Their
work addresses performance and resource consumption issues. Tailoring and cus-
tomization of middleware using modern software engineering methods are not
discussed. But such methods are key to overcome device heterogeneity, resource
constraints and lack of customization functionality.

7 Conclusion and Further Research

Software engineering methods advance the design and implementation of middle-
ware for ubiquitous computing. We have proposed the use of collaboration-based
design and mixin layers to build lightweight flexible middleware for this domain,
to provide a device-independent interface to applications. We have implemented
a set of fine-grained basic components. We have generated three middleware
configurations, tailored to specific application requirements. The configuration
phase consists of a few steps only. A GenVoca grammar describes the combi-
nations permitted. As a result, tailoring of the middleware has been successful
in terms of memory footprint. Reusability and configurability of a mixin-based
implementation helps to deal with device heterogeneity.

As future work, we want to integrate new features like security, persistence
or fault-tolerance. Here, other software engineering methods like aspect-oriented
programming, multi-dimensional separation of concerns or feature-oriented do-
main modeling look promising. Another issue is the performance of mixin-based
middleware, in combination with reusability, customization and extensibility.

Acknowledgments. We thank Helge Sichting for much help with this study.
We acknowledge the generous support of METOP GmbH, Magdeburg.

References

1. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Transactions on Software Engi-
neering and Methodology, 1(4), 1992.

2. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. In
Proc. of the 25th Int. Conference on Software Engineering, 2003.

152 S. Apel and K. Böhm

4. B. Box et al. Simple Object Access Protocol 1.1. Technical report, W3C, 2000.
http://www.w3c.org/TR/SOAP.

5. G. Bracha and W. Cook. Mixin-Based Inheritance. In Proc. of ECOOP / OOP-
SLA, 1990.

6. L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications. IEEE Transactions on Software En-
gineering, 29(10), 2003.

7. R. Cardone, D. Batory, and C. Lin. Java Layers: Extending Java to Support
Component-Based Programming. Technical Report CS-TR-00-11, Computer Sci-
ences Department, University of Texas, 2000.

8. A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proc. of the 3rd
Int. Conference on Aspect-Oriented Software Development, 2004.

9. E. Eide et al. Dynamic CPU Management for Real-Time, Middleware-Based Sys-
tems. In 10th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS 2004), Toronto, Canada, 2004.

10. R. A. Engelen and K. A. Gallivan. The gSOAP Toolkit for Web Services and
Peer-To-Peer Computing Networks. In Proc. of IEEE CCGrid Conference, 2002.
http://www.cs.fsu.edu/˜engelen/soap.html.

11. C. Gill et al. ORB Middleware Evolution for Networked Embedded Systems. In
Proc. of the 8th Int. Workshop on Object Oriented Real-time Dependable Systems
(WORDS’03), Guadalajara, Mexico, 2003.

12. P. Grace, G. S. Blair, and S. Samuel. ReMMoC: A Reflective Middleware to Sup-
port Mobile Client Interoperability. In Proc. of the Int. Symposium on Distributed
Objects and Applications (DOA 2003), Catania, Italy, 2003.

13. G. Kiczales et al. Aspect-Oriented Programming. In Proc. of ECOOP, Berlin,
Heidelberg, and New York, 1997.

14. F. Kon et al. Monitoring, Security, and Dynamic Configuration with the dynam-
icTAO Reflective ORB. In Proc. of Middleware’2000, New York, 2000.

15. T. Ledoux. OpenCorba: A Reflective Open Broker. In Proc. of the 2nd Int.
Conference on Meta-Level Architectures and Reflection, 1999.

16. A. D. McKinnon et al. A Configurable Middleware Framework with Multiple
Quality of Service Properties for Small Embedded Systems. In Proc. of 2nd IEEE
Int. Symposium on Network Computing and Applications, Cambridge, MA, 2003.

17. S. M. Omohundro. The Sather Programming Language. Dr. Dobb’s Journal,
18(11), 1993.

3. G. S. Blair et al. Reflection, Self-awareness and Self-healing in OpenORB. In Proc.
of the 1st Workshop on Self-healing Systems, 2002.

18. H. Ossher and P. Tarr. Multi-Dimensional Separation of Concerns and The Hy-
perspace Approach. In Proc. of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development, 2000.

19. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transaction on Software Engineering, SE-5(2), 1979.

20. M. Román, F. Kon, and R. Campbell. Reflective Middleware: From Your Desk to
Your Hand. IEEE Distributed Systems Online (Special Issue on Reflective Middle-
ware), 2(5), 2001.

21. D. C. Schmidt et al. TAO: A Pattern-Oriented Object Request Broker for Distri-
buted Real-time and Embedded Systems. IEEE Distributed Systems Online, 3(2),
2002.

Towards the Development of Ubiquitous Middleware Product Lines 153

24. V. Subramonian et al. Middleware Specialization for Memory-Constrained Net-
worked Embedded Systems. In 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2004), Toronto, Canada, 2004.

25. M. Weiser. The Computer for the 21st Century. Scientific American, Sep. 1991.
26. M. Weiser. Hot Topics: Ubiquitous Computing. IEEE Computer, 26(10), 1993.
27. C. Zhang and H.-A. Jacobsen. Refactoring Middleware with Aspects. IEEE Tran-

sations on Parallel and Distributed Systems, 14(11), 2003.

22. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collabroation-Based Designs. ACM Transactions
on Software Engineering and Methodology, 11(2), 2002.

23. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.

Extending Standard Java Runtime Systems for
Resource Management

Walter Binder1 and Jarle Hulaas2

1 Artificial Intelligence Laboratory, EPFL, CH–1015 Lausanne, Switzerland
2 Software Engineering Laboratory, EPFL, CH–1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. Resource management is a precondition to build reliable, extensible
middleware and to host potentially untrusted user components. Resource
accounting allows to charge users for the resource consumption of their deployed
components, while resource control can limit the resource consumption of
components in order to prevent denial-of-service attacks. In the approach pre-
sented here program transformations enable resource management in Java-based
environments, even though the underlying runtime system may not expose
information concerning the resource consumption of applications. In order to
accurately monitor the resource utilization of Java applications, the application
code as well as the libraries used by the application – in particular, the classes
of the Java Development Kit (JDK) – have to be transformed for resource
accounting. However, the JDK classes are tightly interwoven with the native code
of the Java runtime system. These dependencies, which are not well documented,
have to be respected in order to preserve the integrity of the Java platform. We
discuss several hurdles we have encountered when rewriting the JDK classes
for resource management, and we present our solutions to these problems.
Performance evaluations complete this paper.

Keywords: Bytecode rewriting, Java, JDK, program transformations, resource
management.

1 Introduction

Resource management (i.e., accounting and controlling physical resources like CPU
and memory) is a useful, yet rather unexplored aspect of software. Increased security,
reliability, performance, and context-awareness are some of the benefits that can be
gained from a better understanding of resource management. For instance, accounting
and controlling the resource consumption of applications and of individual software
components is crucial in server environments that host components on behalf of various
clients, in order to protect the host from malicious or badly programmed code. Resource
accounting may also provide valuable feedback about actual usage by end-clients and
thus enable precise billing and provisioning policies. Such information will currently
be furnished in an ad-hoc way by the underlying operating system, but higher software
layers would definitely benefit from receiving it through standardized APIs in order to

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 154–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Extending Standard Java Runtime Systems for Resource Management 155

enable portable and tightly integrated implementations of policies at the middleware
level.

Java [9] and the Java Virtual Machine (JVM) [12] are being increasingly used as
the programming language and deployment platform for such servers (Java 2 Enterprise
Edition, Servlets, Java Server Pages, Enterprise Java Beans). Moreover, accounting and
limiting the resource consumption of applications is a prerequisite to prevent denial-of-
service (DoS) attacks in mobile agent systems and middleware that can be extended and
customized by mobile code.Yet another interesting target domain is resource-constrained
embedded systems, because software run on such platforms has to be aware of resource
restrictions in order to prevent abnormal termination.

However, currently the Java language and standard Java runtime systems lack mech-
anisms for resource management that could be used to limit the resource consumption of
hosted components or to charge the clients for the resource consumption of their deployed
components. Prevailing approaches to provide resource management in Java-based plat-
forms rely on a modified JVM, on native code libraries, or on program transformations.
For instance, KaffeOS [1] and the MVM [6] are specialized JVMs supporting resource
control. JRes [7] is a resource control library for Java, which uses native code for CPU
control and rewrites the bytecode of Java programs for memory control.

Resource control with the aid of program transformations offers an important ad-
vantage over the other approaches, because it is independent of any particular JVM and
underlying operating system. It works with standard Java runtime systems and may be
integrated into existing middleware. Furthermore, this approach enables resource control
within embedded systems based on modern Java processors, which provide a JVM im-
plemented in hardware that cannot be easily modified [5]. In this approach the bytecode
of ‘legacy’ applications is rewritten in order to make its resource consumption explicit.
Thus, rewritten programs will unknowingly keep track of the number of executed byte-
code instructions (CPU accounting) and update a memory account when objects are
allocated or reclaimed by the garbage collector. These ideas were first implemented in
the Java Resource Accounting Framework (J-RAF) [4], which has undergone a complete
revision in order to provide far better reliability, programmability, and performance. De-
tails concerning the new bytecode rewriting scheme of J-RAF21 can be found in [10].
The drawback of this approach is that we cannot account for the resource consumption
of native code.

In this paper we focus on the solutions developed specifically for correctly and
efficiently rewriting the Java runtime support, called the Java Development Kit (JDK).
Typically, rewriting the bytecode of an application is not sufficient to account and control
its resource consumption, because Java applications use the comprehensive APIs of the
JDK. Therefore, resource-aware versions of the JDK classes are needed in order to
monitor the total resource consumption of an application. Ideally, the same bytecode
rewriting algorithm should be used to rewrite application classes as well as JDK classes.
However, the JDK classes are tightly interwoven with native code of the Java runtime
system, which causes subtle complications for the rewriting of JDK classes. In this paper
we report on the difficulties we encountered with JDK rewriting and on our solutions

1 http://www.jraf2.org/

156 W. Binder and J. Hulaas

to these problems. While we describe the problems and solutions in the context of CPU
management, they apply for memory management in a similar way. Finally, we present
benchmark results of different strategies for JDK rewriting on various Java runtime
systems.

This paper is structured as follows: In the next section we explain the basic idea of our
program transformations for CPU management. In section 3 we discuss the problems
in applying these transformations to the JDK classes, and in section 4 we show the
necessary refinements for JDK rewriting. Section 5 presents a tool that helped us extend
certain JDK classes. In section 6 we discuss performance measurements of different
program transformation strategies. Finally, section 7 concludes this paper.

2 Transformation for Resource Control

In our approach the bytecode of each Java method is rewritten to expose its CPU con-
sumption.2 Every thread has an associated ThreadCPUAccount that is updated while
the thread is executing the rewritten code. In each basic block of code the number of
executed bytecode instructions is added to a counter within the ThreadCPUAccount.
Periodically, the counter is checked and if it exceeds a dynamically adjustable threshold,
a method is invoked on the ThreadCPUAccountwhich reports the thread’s CPU con-
sumption to a user-defined CPU manager. As multiple ThreadCPUAccounts may be
associated with the same CPU manager, the manager is able to aggregate the CPU con-
sumption of a set of threads. For instance, a CPU manager may be responsible for a set
of threads executing within a component (such as a Servlet or a mobile agent). The CPU
manager may implement an application-specific accounting, scheduling, and controlling
policy. For example, the CPU manager may log the reported CPU consumption, it may
try to terminate threads that exceed their allowed CPU quota, or it may delay threads
if their execution rate is too high. Because the task of executing scheduling policies is
distributed among all threads in the system, we call this approach self-accounting. While
the details and APIs of our self-accounting scheme are presented in [10, 2], in this paper
we exclusively focus on the particularities of transforming the classes of standard Java
runtime systems.

The code in table 1 illustrates how the ThreadCPUAccount could
be bound to a thread using a thread-local variable (thread-local variables
are bound to Thread instances, i.e., each thread has its own copy). The
method ThreadCPUAccount.getCurrentAccount() returns the
ThreadCPUAccount associated with the calling thread. The thread-local vari-
able has to be set whenever a thread is created.

As each Java method has to access the ThreadCPUAccount, a simple transforma-
tion scheme may load the ThreadCPUAccount on method entry as shown in table 2.3

2 The rewriting operation is normally performed statically, and this can happen either once for
all (as would be expected in the case of standard classes like the JDK), or at load-time (for
application-level classes).

3 For the sake of easy readability, we show the transformation at the level of the Java language,
whereas our implementation operates at the JVM bytecode level.

Extending Standard Java Runtime Systems for Resource Management 157

Table 1. Binding ThreadCPUAccounts to threads using thread-local variables

public class ThreadCPUAccount {
private static final ThreadLocal currentAccount = new ThreadLocal();

public static ThreadCPUAccount getCurrentAccount() {
return (ThreadCPUAccount)currentAccount.get();

}
...

}

Table 2. Simple rewriting scheme: The ThreadCPUAccount is loaded on method entry

void f() {
ThreadCPUAccount cpu = ThreadCPUAccount.getCurrentAccount();
... // method code with accounting
g();
...

}

Table 3. Optimized rewriting scheme: The ThreadCPUAccount is passed as extra argument

void f(ThreadCPUAccount cpu) {
... // method code with accounting
g(cpu);
...

}

Here we only show the method entry as well as the exemplary invocation of a method
g(), whereas the actual accounting code is not presented in this paper (see [10] for
details).

Unfortunately, it turns out that an entry sequence as depicted in table 2 causes high
overhead. Access to thread-local variables requires loading of the Thread object rep-
resenting the currently executing thread. Thus, we opted for a different transformation
scheme as illustrated in table 3. In this approach the ThreadCPUAccount is passed
as additional argument to methods/constructors. This scheme works insofar as all in-
vocation sites are updated to provide the additional actual argument. In the best case,
the ThreadCPUAccount.getCurrentAccount() method will be invoked only
once at program startup, and then the resulting account will flow through the extra
arguments during the rest of the execution.

Because native code may invoke Java methods and we do not modify native code, we
have to preserve a method with the same signature as before rewriting.4 For this reason,
we add wrapper methods as shown in table 4, which load the ThreadCPUAccount

4 One example is the main() method, which by convention has to have exactly one argument,
an array of strings containing the command-line arguments; the main() method will very
likely be invoked at startup by native code, or by Java code making use of the reflection API,
hence the invocation sites cannot be updated by our systematic scheme.

158 W. Binder and J. Hulaas

Table 4. Wrapper method with unmodified signature

void f() {
ThreadCPUAccount cpu = ThreadCPUAccount.getCurrentAccount();
... // account for execution of wrapper
f(cpu);

}

Table 5. Reverse wrapper for native method

void n(ThreadCPUAccount cpu) {
... // account for execution of reverse wrapper
n();

}

native void n();

and pass it to the resource-aware methods that take the ThreadCPUAccount as extra
argument. Compatibility with non-rewritten and non-rewritable code is thus ensured.

As we do not change native methods, they do not receive the additional
ThreadCPUAccount argument. Because rewritten Java methods will invoke methods
with the extra argument, we provide reverse wrappers for native methods, as depicted in
table 5.

3 Applying the Transformation to JDK Classes

While the transformations presented in the previous section are conceptually simple and
work well with application classes, they cannot be directly applied to JDK classes. In
this section we summarize the difficulties we encountered when rewriting the JDK. In
the following section we will elaborate solutions to these problems.

3.1 Thread Without Thread Object

The implementation of ThreadCPUAccount.getCurrentAccount() invokes
ThreadLocal.get(), which calls Thread.currentThread(). During the
bootstrapping of the JVM there is no Thread object associated with the thread that
loads and links the initial JDK classes. If Thread.currentThread() is executed
during the bootstrapping process, it will return null. Hence, at this initial stage thread-
local variables must not be used. Consequently, if we use the ThreadCPUAccount
implementation shown in the previous section and rewrite all JDK classes (including,
for instance, the static initializers of Object and Thread) according to the scheme
presented before, the bootstrapping of the JVM will fail.

3.2 Endless Recursion When Accessing Thread-Local Variables

Another problem is related to the implementation of the class ThreadLocal.
If all JDK classes – including ThreadLocal – are rewritten accord-
ing to the transformations given in the previous section, the execution of

Extending Standard Java Runtime Systems for Resource Management 159

ThreadCPUAccount.getCurrentAccount() will result in an end-
less recursion, since the wrappers of the ThreadLocal methods will invoke
ThreadCPUAccount.getCurrentAccount() again.

3.3 Native Code Depending on a Fixed Call Sequence

In the JDK certain methods rely on a fixed invocation sequence. Examples include
methods in Class, ClassLoader, DriverManager, Runtime, and System.
These methods inspect the stack frame of the caller to determine whether an operation
shall be permitted. If wrapper methods (or reverse wrappers for native methods) are
added to the JDK, the additional stack frames due to the invocation of wrapper methods
will violate the assumptions of the JDK programmer concerning the execution stack.

While in [13] the authors claim to have added wrapper methods to all JDK methods
without any problems, we discovered the problem mentioned before during the execution
of the SPEC JVM98 benchmarks [14]. The problem was not easy to detect, simple
applications may execute successfully in a JDK with wrapper methods.

4 Solving the Difficulties of JDK Rewriting

In this section we refine the implementation of
ThreadCPUAccount.getCurrentAccount() and the transformation rules for
the rewriting of JDK classes.

4.1 Refined Implementation of ThreadCPUAccount

To solve the problems discussed in sections 3.1 and 3.2, we decided to
avoid the JDK implementation of thread-local variables and to attach the
ThreadCPUAccount directly to the Thread object. For this purpose, we add
the field ‘public ThreadCPUAccount org jraf2 cpuAccount;’ to the
Thread class.5 Moreover, we modify the Thread constructors in order to al-
locate a new instance of ThreadCPUAccount and to store it in the field
org jraf2 cpuAccount. Consequently, whenever a Thread is allocated, it will
receive its own ThreadCPUAccount instance. For these modifications, we have
developed a simple but convenient tool to patch and extend legacy code, which we
present in section 5. Another advantage of this approach is that the access to the
org jraf2 cpuAccount variable is faster than using the JDK implementation of
thread-local variables, because we avoid the lookup in a hashtable.

In table 6 we show some part of the code of the refined implementa-
tion of ThreadCPUAccount. If Thread.currentThread() returns null
during the bootstrapping of the JVM, a default ThreadCPUAccount is re-
turned. This simple check solves the problem outlined in section 3.1. More-
over, during bootstrapping Thread.currentThread() may return a Thread

5 To ensure that malicious applications do not directly access the added public variable, we verify
each class before rewriting to ensure that it does not refer to that variable. The methods of the
reflection API can be modified as well in order to prevent access to the variable.

160 W. Binder and J. Hulaas

Table 6. Implementation of ThreadCPUAccount based on a modified Thread class

public class ThreadCPUAccount {
private static final ThreadCPUAccount defaultCPU = new ThreadCPUAccount();

public static ThreadCPUAccount getCurrentAccount() {
Thread t = Thread.currentThread();
if (t == null) return defaultCPU;
ThreadCPUAccount cpu = t.org_jraf2_cpuAccount;
return cpu == null ? defaultCPU : cpu;

}
...

}

object which has not yet been completely initialized. In this case, a default
ThreadCPUAccount is returned, too. To avoid an endless recursion when calling
ThreadCPUAccount.getCurrentAccount() (see section 3.2 for details), we
have to ensure that Thread.currentThread() does not receive a wrapper calling
ThreadCPUAccount.getCurrentAccount(). Usually, this is not an issue, if
Thread.currentThread() is implemented as a native method. For the same rea-
son, the method ThreadCPUAccount.getCurrentAccount() itself is excluded
from rewriting.

4.2 Analysis and Refined Rewriting of JDK Classes

In order not to violate assumptions regarding the structure of the call stack when a JDK
method is invoked, we have to make sure that there are no extra stack frames of wrappers
of JDK methods on the stack. A trivial solution is to rewrite the JDK classes according
to the transformation shown in table 2. However, as we have mentioned before, such a
rewriting scheme may cause high overhead on certain JVMs.

A first step towards a more efficient solution is to ensure that native JDK methods
are always invoked directly. That is, reverse wrappers as depicted in table 5 are to be
avoided for native JDK methods. For this purpose, we have developed a simple tool to
analyze the JDK, which gives out a list of methods L that must not receive wrappers.
This list is needed for the subsequent rewriting of JDK and of application classes, since
invocations of methods in L must not pass the extra ThreadCPUAccount argument.

Obviously, L includes all native JDK methods. Additionally, we have to consider
polymorphic call sites that may invoke native JDK methods. In this case, the extra
ThreadCPUAccount argument must not be passed, since the target method may be
native and lack a reverse wrapper. Hence, if a native method overwrites/implements a
method m in a superclass/interface, m has to be included in L. We use the following
simple marking algorithm to compute L.

1. Compute the class hierarchy of the JDK. For each class, store the class name, a
reference to the superclass, references to implemented interfaces, and a list of the
signatures and modifiers of all methods in the class.

2. Mark all native methods.
3. Propagate the marks upwards in the class hierarchy. Let mc be a marked method,

which is neither static nor private. Furthermore, let C be the class defining mc, and
A the set of ancestors of C, including direct and indirect superclasses as well as all

Extending Standard Java Runtime Systems for Resource Management 161

Table 7. Rewriting scheme for JDK methods: The code is duplicated

void f() {
ThreadCPUAccount cpu = ThreadCPUAccount.getCurrentAccount();
... // method code with accounting
g(cpu);
...

}

void f(ThreadCPUAccount cpu) {
... // method code with accounting
g(cpu);
...

}

implemented interfaces. For each class or interface X in A, if X defines a method
mx with the same signature as mc, which is neither static nor private, mark mx.

4. All marked methods are collected in the list L.

The JDK methods in the list L are rewritten as follows:

– Native methods do not receive the reverse wrapper shown in table 5.
– Abstract methods are not modified; the signature extended with the extra argument

is not added.
– The signature of Java methods is not touched either; they are transformed according

to the simple rewriting scheme given in table 2.

So far, we have ensured that native JDK methods are always invoked directly. How-
ever, as we have mentioned in section 3.3, there are JDK methods which require that
their callers are not invoked through wrappers either. To respect this restriction, the code
of each JDK method not included in L is duplicated, as presented in table 7.6 As there
are no wrappers for JDK methods, the call sequence within the JDK remains unchanged.
While the code is approximately duplicated (with respect to the rewriting scheme for
application classes), the execution performance does not suffer significantly, because
the ThreadCPUAccount is passed as argument whenever possible.

5 Extending Java Legacy Code

We have developed a simple tool called MergeClass, which allows to insert new func-
tionality into compiled Java classfiles. With the aid of MergeClass it is possible to plant
new features into standard JVMs and to experiment with the modified JVM. After the
desired extension has been written in Java and has been compiled, MergeClass directly
merges it into given classfiles. This approach is more favorable than resorting to low-
level tools, such as disassemblers, assemblers, or decompilers, which would require to
patch each class manually and separately. Moreover, many Java decompilers have prob-
lems to correctly decompile certain Java classfiles, e.g., obfuscated classes. Compared

6 In this sample we assume that method g() is not in the list L. Otherwise, the extra argument
must not be passed to g().

162 W. Binder and J. Hulaas

with tools for aspect-oriented programming, such as AspectJ [11], our MergeClass tool
is simple and limited, but it is easy to use, it does not require to learn new language
features, and it enables a very fast development and experimentation cycle.

5.1 The MergeClass Tool

The MergeClass tool takes 3 or 4 arguments. The first two arguments refer to existing Java
classfiles. The first one is the class to be extended (usually legacy code), the second one
is the extension to be merged into the first one (usually developed in Java and compiled
with a standard Java compiler). The third argument specifies the output file to hold the
resulting Java classfile. The fourth argument is optional, it defines a configuration file to
parametrize the merging process.

MergeClass reads the original input classfile IO and the extension input classfile IE .
In order to merge IE into IO, IE has to fulfill several restrictions:

– IE must extend one of the following 3 classes:
1. java.lang.Object, allowing to merge simple extensions that are indepen-

dent of IO.
2. The superclass of IO, enabling the merging of classes with the same superclass.
3. IO, allowing to merge the most specific subclass into its superclass (if all con-

straints are met, this process may be iterated).
– IE must not define more than 1 constructor. The constructor must not take any

arguments. (Its signature has to be ‘()V’.)
– IE must not have inner classes.

The resulting output class O has the same name, accessibility, and superclass as IO.
It implements the union of the interfaces implemented by IO and IE . O is final if IE is
final, i.e., the extensibility of IE overrules the extensibility of IO. (This feature may be
used to ‘open’ a final legacy class by adding interfaces and making it extensible.)

If no special configuration file is defined, MergeClass first copies all members (fields,
methods, and constructors) of IO into an in-memory representation of O. Then it copies
or merges all members of IE into O with the following transformations or checks:

T1: All references to the name of IE have to be replaced with a reference to the name
of IO.

T2: If IE extends IO and code in IE invokes a private method in IO (how this is possible
will be explained at the end of this section), the invokevirtual bytecode in-
struction is replaced with an invokespecial bytecode instruction, as for private
methods (in the resulting class) invokespecial has to be used.

C1: If there is a name clash (i.e., IE and IO define a field with the same name or a method
with the same name and signature), an exception is thrown and no result classfile
is created (as will be explained later, the optional configuration file can be used to
resolve such name conflicts).

The static initializer and the constructor of IE cannot be simply copied into O, but
they have to be integrated with the code copied from IO. More precisely, if IO and IE

both define a static initializer, the code in the static initializer of IE has to be appended

Extending Standard Java Runtime Systems for Resource Management 163

to the code of the static initializer taken from IO. In a similar way, if IE defines a non-
trivial constructor (i.e., a constructor that does more than just invoking the superclass
constructor), the code of the constructor of IE has to be appended to the code of each
constructor taken from IO. The following transformations are necessary to append code
from IE to code from IO:

T3: return instructions in the code taken from IO are replaced with goto instructions
that jump to the begin of the code to be appended from IE . Redundant goto
instructions are removed.

T4: As the structure of the appended code remains unchanged, exception handlers in IE

are to be preserved.
T5: In the constructor of IE the initial invocation of the superclass constructor is stripped

off.

With the aid of a special configuration file, the merging process can be customized.
The configuration file allows to deal with name clashes and to mark special methods in
IE whose code shall be merged into certain methods of IO.

For each member in IE (except for the constructor and static initializer), the config-
uration file may define one of the following properties:

– DiscardInConflict: If there is a name clash, the member in IO will be pre-
served.

– TakeInConflict: If there is a name clash, the member in IE will replace the
member in IO.

Moreover, for a void method M in IE that takes no argu-
ments, the property InsertAtBegin(regular expression) or
AppendAtEnd(regular expression) may be defined. As a consequence, M
will not be copied directly into O, but its code will be merged into all methods of IO

whose name match the given regular expression. If M is a static method, only static
methods in IO are considered for a match, otherwise only instance methods may match.

The code of M may be inserted in the beginning or at the end. If it is appended at the
end, the transformations T1–T4 are applied. In addition, the following transformation is
needed:

T6: If M is appended to a non-void method in IO, the method result is stored in an
otherwise unused local variable and each return instruction in the appended code
is replaced with a code sequence to load the result onto the stack and to return it.

If the code of M is to be inserted at the beginning, the transformations T1, T2, and T4
have to be complemented with the following transformations (note that T3 is replaced
with T7):

T7: return instructions in the code to be inserted from IE are replaced with goto
instructions that jump to the begin of the code taken from IO. Redundant goto
instructions are removed.

T8: All local variable indices in the code inserted from IE are incremented accordingly
in order to avoid clashes with local variables used in the code of IO. For an instance

164 W. Binder and J. Hulaas

method, the local variable 0 remains unchanged, since by default it holds the refer-
ence to this. This transformation ensures that the inserted code cannot mess up
with the arguments passed to the method taken from IO.

If multiple InsertAtBegin or AppendAtEnd expressions apply to a given
method in IO, the code merging happens in the order of the definition of the properties
in the configuration file.

As mentioned before, it may be necessary that IE references private or package-
visible members in IO. For this purpose, we offer a complementary tool, MakePub-
licExtensible, which takes as arguments the names of two Java classfiles, an input file
and an output file. The output file is created by making the input class public and non-
final, as well as making all its members public. Hence, the Java source of IE may extend
the class that results of applying MakePublicExtensible and access all of its members.
The compilation of the Java source of IE will succeed, because the accessibility and
extensibility constraints have been removed. Afterwards, IE is merged with the original
IO. Of course, in the merged class the code taken from IE may access all members.
The class resulting from applying MakePublicExtensible is discarded. It is only needed
temporarily in order to be able to compile the sources of IE .

5.2 Extending Thread Using MergeClass

Table 8 illustrates how the Thread extensions described in section 4 can be separately
implemented, compiled, and injected into the Thread class using our MergeClass
tool. MergeClass adds the fieldorg jraf2 cpuAccount tojava.lang.Thread.
Moreover, it appends the allocation of aThreadCPUAccount object to each construc-
tor in Thread.

Table 8. Thread extension

public class ThreadExtension extends java.lang.Thread {
public ThreadCPUAccount org_jraf2_cpuAccount;

// to be appended to each constructor:
public ThreadExtension() {org_jraf2_cpuAccount = new ThreadCPUAccount();}

}

Using MergeClass we have been able to experiment with different strategies of
maintaining accounting objects. We have implemented the thread extensions in pure
Java and compiled them with a standard Java compiler. Furthermore, we were able to
test the thread extensions with various versions of the JDK without any extra effort (apart
from applying MergeClass). We also integrated some more elaborate features into the
Thread class, for instance a mechanism that initializes the newThreadCPUAccount
with the CPU manager of the calling thread’s ThreadCPUAccount. This ensures that
a spawned thread will execute under the same CPU accounting policy as its creator
thread. For details concerning CPU managers, see [10]. Moreover, the thread extensions
can be easily adapted for other accounting objects, such as memory accounts (for details
concerning memory accounting in Java, see [3]).

Extending Standard Java Runtime Systems for Resource Management 165

Fig. 1. Overhead of CPU accounting: JDK and benchmarks transformed with the simple scheme

6 Evaluation

In this section we present some benchmark results comparing the accounting overhead
of different rewriting strategies on various JVMs. We ran the SPEC JVM98 benchmark
suite [14] on a Linux RedHat 9 computer (Intel Pentium 4, 2.6 GHz, 512 MB RAM). For
all settings, the entire JVM98 benchmark was run 10 times, and the final results were
obtained by calculating the geometric means of the median of each sub-test. Here we
present the measurements made with IBM’s JDK 1.4.1 platform in its default execution
mode, with Sun’s JDK 1.3.1 in its ‘client’ mode, as well as with Sun’s JDK 1.5.0 beta
platform in its ‘client’and ‘server’modes. While IBM JDK 1.4.1 and Sun JDK 1.5.0 rep-
resent recent JVMs with state-of-the-art just-in-time compilers, we intentionally added
an older JVM for comparison.

The most significant setting we measured was the performance of a rewritten JVM98
application on top of a rewritten JDK. Figure 1 shows the relative overhead of the simple
transformation scheme of table 2 applied to the JDK as well as to the benchmark classes.
In the beginning of each method Thread.currentThread() is invoked. We ex-
pected this rewriting scheme to result in high overhead on certain JVMs (worst case).
In particular, the older Sun JDK 1.3.1 performs badly in this setting, the overhead is up
to 1090% for the mtrt benchmark, the geometric mean is about 350% overhead. Appar-
ently, Thread.currentThread() is not implemented efficiently on this JVM. For
the other JVMs, the average overhead is about 40% in this setting. Because of this big
difference, we used a logarithmic scale in figure 1.

166 W. Binder and J. Hulaas

Fig. 2. Overhead of CPU accounting: JDK transformed with the simple scheme, benchmarks with
the wrapper scheme

For the measurements in figure 2, the JDK classes were rewritten according to the sim-
ple transformation scheme (table 2), whereas the benchmark classes were transformed
using the wrapper strategy of table 3. In this setting, Sun JDK 1.3.1 incurred an overhead
of about 80%, whereas on the other JVMs we measured only 25–30% overhead.

For figure 3, the JDK classes were transformed based on the scheme of table 7 (no
wrappers, code duplication), while the benchmark classes were rewritten according to
the wrapper scheme of table 3. In this setting, all JVMs incur an overhead of 30–40%. For
Sun JDK 1.3.1, this scheme gives the best results. Interestingly, for the other more recent
JVMs, this scheme does not improve the performance, which can be explained as follows:
On the one hand, the rewriting of the JDK classes significantly increases the code size
and hence causes overheads during class loading and just-in-time compilation. On the
other hand, the number of invocations of Thread.currentThread() is reduced.
For recent JVMs with a rather fast implementation of Thread.currentThread()
this rewriting scheme does not pay off, but for the older Sun JDK 1.3.1 the benefits
of reducing the number of Thread.currentThread() invocations outweigh the
overheads due to the increased code size.

We can conclude that current JDKs shall be transformed using the simple scheme,
whereas older releases will perform better when rewritten with code duplication. For li-
braries other than the JDK and for application classes, the wrapper scheme performs best.

Note that we did not apply any optimization apart from passing
ThreadCPUAccount objects as extra arguments. Currently, we are evaluating
optimizations that reduce the number of accounting sites in the rewritten code. For

Extending Standard Java Runtime Systems for Resource Management 167

Fig. 3. Overhead of CPU accounting: JDK transformed with code duplication, benchmarks with
the wrapper scheme

instance, we are working on control flow optimizations that increase the average size
of basic blocks of code and therefore reduce the proportion of accounting instructions
during the execution of rewritten programs. In particular, we are considering special
cases of loop unrolling which do not result in a significant increase of the code size, but
allow to remove accounting instructions from loops. Initial measurements of optimized
CPU accounting, which are not presented in this paper due to space limitations, indicate
that such optimizations allow to further reduce the overhead to about 20% and below
on current standard JVMs.

The rewriting process itself takes only a very short time, although our tools have not
yet been optimized to minimize the rewriting time. For example, rewriting the 20660
methods of the 2790 core classes of IBM’s JDK 1.4.1 takes less than one minute on our
test machine. The implementations of our tools are based on the bytecode engineering
library BCEL [8], which provides an object representation for the individual bytecode
instructions. Optimizing our tools for dynamic rewriting of classes during class loading
may require resorting to a lower-level bytecode representation.

We have also considered using tools for aspect-oriented programming in order to
define the sites where accounting is needed and to insert the accounting code there.
However, in our approach accounting sites are ubiquitous, as they are based on the low-
level concept of basic blocks of code. Most tools for aspect-oriented programming, such
as AspectJ [11], allow to define only higher-level pointcuts, such as method invocations,
the beginning of exception handlers, etc. With such tools it is not easily possible to
express that accounting code is to be inserted into each basic block of code. Moreover,
it would be difficult to specify our particular scheme of passing acocunting objects as

168 W. Binder and J. Hulaas

extra arguments (which involves the creation of wrapper methods or the duplication of
code) with current aspect languages. For our purpose, the direct manipulation of the
JVM bytecode is the best suited approach, which allows us to implement low-level
transformations and optimizations.

7 Conclusion

Program transformation techniques allow to transparently integrate resource manage-
ment into Java-based systems, although current Java runtime systems do not support this
feature. To account for the total resource consumption of an application component, it
is not sufficient to rewrite its classes, but all used libraries, including middleware and
JDK classes, have to be transformed, too.

In this paper we have outlined the difficulties of modifying the classes of standard
JDKs. The native code of the Java runtime system relies on several low-level assumptions
regarding the dependencies of Java methods in certain JDK classes. Thus, program
transformations that are correct for pure Java may break native code in the runtime
system. Unfortunately, these dependencies are not well documented, which complicates
the task of defining transformation rules that work well with the Java class library.

Moreover, the transformed JDK classes may seem to work as desired even with large-
scale benchmarks, while the transformation may have compromised the security model
of Java. Such security malfunctions are hard to detect, as they cannot be perceived when
running well behaving applications. We have experienced that a minor restructuring of
the method call sequence completely breaks several security checks, which are based on
stack introspection and assume a fixed call sequence. Consequently, modifications and
updates of the JDK are highly error-prone.

In this paper we have presented program transformations for resource management,
in particular focusing on CPU accounting, which are applicable to application classes
as well as to the Java class library. We have developed different transformation schemes
and evaluated their respective performance. The most elaborate scheme results in an
overhead for CPU accounting of about 25–30% (without optimizations to reduce the
number of accounting sites).

References

1. G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, resource management,
and sharing in Java. In Proceedings of the Fourth Symposium on Operating Systems Design
and Implementation (OSDI’2000), San Diego, CA, USA, Oct. 2000.

2. W. Binder and J. Hulaas. A portable CPU-management framework for Java. IEEE Internet
Computing, 8(5):74–83, Sep./Oct. 2004.

3. W. Binder, J. Hulaas, and A. Villazón. Resource control in J-SEAL2. Tech-
nical Report Cahier du CUI No. 124, University of Geneva, Oct. 2000.
ftp://cui.unige.ch/pub/tios/papers/TR-124-2000.pdf.

4. W. Binder, J. Hulaas,A.Villazón, and R.Vidal. Portable resource control in Java: The J-SEAL2
approach. In ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA-2001), USA, Oct. 2001.

Extending Standard Java Runtime Systems for Resource Management 169

5. W. Binder and B. Lichtl. Using a secure mobile object kernel as operating system on embedded
devices to support the dynamic upload of applications. Lecture Notes in Computer Science,
2535, 2002.

6. G. Czajkowski and L. Daynès. Multitasking without compromise: A virtual machine evo-
lution. In ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’01), Tampa Bay, Florida, Oct. 2001.

7. G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java. In Pro-
ceedings of the 13th Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA-98), volume 33, 10 of ACM SIGPLAN Notices, NewYork, USA, Oct.
1998.

8. M. Dahm. Byte code engineering. In Java-Information-Tage 1999 (JIT’99), Sept. 1999.
http://jakarta.apache.org/bcel/.

9. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java language specification. Java series.
Addison-Wesley, Reading, MA, USA, second edition, 2000.

10. J. Hulaas and W. Binder. Program transformations for portable CPU accounting and control
in Java. In Proceedings of PEPM’04 (2004 ACM SIGPLAN Symposium on Partial Evaluation
& Program Manipulation), pages 169–177, Verona, Italy, August 24–25 2004.

11. I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams Publishing, Indianapolis, 2003.
12. T. Lindholm and F.Yellin. The Java Virtual Machine Specification. Addison-Wesley, Reading,

MA, USA, second edition, 1999.
13. A. Rudys and D. S. Wallach. Enforcing Java run-time properties using bytecode rewriting.

Lecture Notes in Computer Science, 2609:185–200, 2003.
14. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. Web pages

at http://www.spec.org/osg/jvm98/.

Modeling Distributed Applications for
QoS Management�

Patrice Vienne, Jean-Louis Sourrouille, and Mathieu Maranzana

INSA Lyon, PRISMa, Bat. B. Pascal,
F-69621, Villeurbanne Cedex, France

{Patrice.Vienne, Jean-Louis.Sourrouille, Mathieu.Maranzana}@insa-lyon.fr

Abstract. To increase the total QoS (Quality of Service) provided by a
system, run-time adaptation of application behavior to execution context
is a promising way. This paper focuses on modeling of distributed appli-
cations in order to manage their QoS through a middleware. The model
captures the information required to schedule application activities in or-
der to improve QoS and share out resources. Since only applications hold
the required knowledge for alternative execution or graceful degradation,
they adapt themselves under the control of the middleware. To ease the
design of applications, a virtual execution environment implements the
proposed middleware and emulates the execution of applications from
their model.

1 Introduction

Generally, computer systems provide services according to a best effort policy
that proves to be satisfactory as long as the required resources are available.
When resources are becoming scarce, a more effective policy should be imple-
mented to improve the provided QoS (Quality of Service). It expects applications
to provide resource requirements associated with a satisfaction indicator named
utility. This paper focuses on modeling of distributed applications to manage
their QoS through a middleware. Modeling depends on factors such as execution
context (e.g., distributed), nature of applications (e.g., multimedia, real-time),
resource management policy (e.g., reservation) or QoS optimization policy (e.g.,
simplex, heuristic). From the middleware point of view, this model specifies the
application behavior and QoS features needed to achieve QoS management.

This work addresses reactive applications stimulated by events whose arrival
law is unpredictable, running in environments in which resource use is fully
controlled. Before any application activity, an admission control should check
resource availability to guarantee end-to-end execution, from the initial stimulus
to the reply (to cancel a running task is always expensive [2]). QoS management
requires applications to supply degrees of freedom to adapt their behavior and
tune resource consumption. To achieve tunability, applications provide the same

� This work was partly supported by the BQR fund of INSA Lyon.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 170–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling Distributed Applications for QoS Management 171

service with several modes, e.g., normal, degraded (execution level in [5]). Each
mode is associated with a utility, and mode selection aims to maximize the total
utility of the system according to available resources.

In distributed contexts, the QoS Management System (QMS) architecture is
generally based on a middleware relying on existing layers [4]. Our middleware,
PMQDA (Plan-based Middleware for QoS management of Distributed Applica-
tions), manages resources and controls applications with the aim of optimizing
their satisfaction. To enforce guarantees, unregistered applications can only use
unscheduled resources (CPU with a low priority, free bandwidth, etc.). We as-
sume that the underlying layers of PMQDA, including OS (Operating System)
and communication layers, provide all the needed basic services such as CPU
and bandwidth control, messaging, etc. PMQDA will use available platform ser-
vices only, therefore issues related to changes in underlying layers are out of the
scope of the study (other approaches in [19] or [14] that abstracts network pro-
tocols). Symmetrically, the way applications change their resource consumption
is unknown: the PMQDA mechanisms apply whatever the application area.

The paper uses the UML [20] wherever possible due to its high expressive
power that extension mechanisms increase even more. Moreover, UML is be-
coming a standard that most readers know. The paper is organized as follows:
section 2 specifies the context of the work and discusses the major decisions;
section 3 describes the application model; section 4 gives features about middle-
ware implementation and virtual execution environment; finally, section 5 deals
with related works.

2 Context of the Work and Choices

PMQDA manages the QoS of applications distributed on several nodes: an appli-
cation is composed of “local applications” running on different computing nodes.
Let’s assume an application supplying three data transmission modes and run-
ning on two nodes (see table 1). The execution of local applications on each
node should be synchronized in such a way that when data are compressed on
node A, they are decompressed on node B using the same policy: related local
applications should run in the same mode on all the nodes. According to the
execution context and the required resources, PMQDA sets the running mode

Table 1. Application example

Mode Node A Node B

1 Acquisition, then Transmission Reception, then Display
2 Acquisition, Compression-1, Reception, Decompression-1,

Transmission Display
3 Acquisition, Compression-2 (degrading), Reception, Decompression-2,

Transmission Display

172 P. Vienne J.-L. Sourrouille, and M. Maranzana

for all the applications. In the above example, large bandwidth availability fits
with mode 1, while narrow bandwidth and available CPU on both nodes fit with
the modes 2 and 3 (3 using even less bandwidth).

The rest of the section discusses strategic choices and gives additional preci-
sions to define more precisely the QoS management policy.

2.1 Intrusive/Non-intrusive Policy

The choice of an adaptation policy induces a major decision about architecture.
When using a non-intrusive management policy, the execution environment (OS
and middleware) controls adaptations independently of applications, while ap-
plications are involved in adaptation when using an intrusive policy.

Non-intrusive Policy. The OS, including communication layers, controls the
adaptations. Any OS already manages the QoS, for instance allocating CPU
time, hence only adding QoS management functions is needed [2]. As a great
advantage, all the applications running in the environment automatically benefit
from the same QoS services. When it is not possible to modify the OS, the QoS
management functions are implemented on top of the OS and underlying layers
using a middleware, which is easier to port.

Intrusive Policy. In fact, only the application has the necessary knowledge
to set up alternative behaviors: it may downgrade a frame rate from 25 to
12fps to reduce resource consumption thus keeping a fair service, while an
OS that would reduce equivalently the application resources would get an un-
acceptable result. This approach only deals with specifically developed soft-
ware and requires applications to be finely described: operating modes, resource
consumption, etc.

Most works propose a compromise in which applications export their resource
needs and provide an interface to modify their behavior hence allowing control
from the outside (e.g., [7, 12]). This approach has been chosen for it takes ad-
vantage of the two policies: a control system shared by all the applications to
reduce development work as well as customized adaptation based on application
knowledge. The QMS is implemented in a middleware and relies on the best
effort standard services of usual OS. As an additional advantage, this architec-
ture leads to a separation of concerns: the middleware deals with reusable QoS
management functions while the application deals with target system specific
functions. It would be neater not to export the application’s characteristics to
hide its implementation, but it would require the QMS to enter into endless
negotiations such as “Who can give me memory? CPU time?”.

2.2 Model of Execution

Numerous works about QoS deal with periodic multimedia applications. Practi-
cally, QoS management policies depend on the nature of applications.

,

Modeling Distributed Applications for QoS Management 173

T4

T3

T2 T1

(a) Task flow view

o1 o2 o3

ma
mb

mc

(b) Control flow view

Fig. 1. Different points of view on systems

Periodic task flow (UML activity diagram Fig. 1(a)). A periodic task Ti

produces data that in turn becomes inputs for the next tasks. Data availabil-
ity automatically synchronizes the sequence of tasks. Constraints are generally
associated with the delay between two tasks.

Aperiodic events (UML Sequence diagram Fig. 1(b)). A sequence of op-
erations is a transaction with explicit synchronization. At event arrival, the cor-
responding sequence of operations executes in the given order until transaction
is complete, i.e., all the outputs are produced. Time constraints are associated
with the delay between input and output. A periodic system is a particular case
of aperiodic system that is periodically stimulated by a clock. Our work focuses
on systems subject to aperiodic events.

2.3 Resource Management

Two main policies are used to manage resources in QMS subject to aperiodic
events: average load reservation and planning reservation.

Average Load Reservation. For each activity, an acceptable range of avail-
able CPU time within a period specifies the resource consumption (e.g., [6]).
For instance the activity b3 Fig. 2(a) requires [100ms..500ms] each second. The
starting time of the activity within the period is unknown. The QMS deduces
the percentage of free resource from the description of activities. When a new ap-
plication asks for an admission, a new operational point is computed, sometimes
analytically (e.g., solving a system of linear equations in [10]). The maximal
delay to execute a sequence of activities is statically deduced from timing spec-
ifications.

The main advantage of this approach is its simplicity. It assumes that activ-
ities organize themselves automatically: wait and synchronization are not man-
aged.

Planning Reservation. Each activity supplies its resource requirements in
the worst case and its deadline. From these requirements, an exact planning is
computed (e.g., [3]). Figure 2(b) shows an example with three activities (a1, a2,

174

(a) Average load (b) Pre sic e schedule of resource

Fig. 2. Two policies to deal with resource reservation

a3) running on two nodes with various requirements. The activity a1 requires
memory on node A from starting time to a1deadline, 150ms of CPU on node A,
then bandwidth and CPU on both nodes A and B etc.

This approach is complex since the general optimization problem of utility
without planning is already NP-Hard [15]. In practice, the goal is to reach a
compromise between high quality and planning effort using a heuristic (e.g., [1]).

In spite of this drawback, we have chosen planning reservation, which takes
into account synchronization and ensures end-to-end deadline: any admitted
treatment is guaranteed to execute. In fact, the two approaches may be used
together to share resources inside a planed area. For instance, on Fig. 2(b) the
transmission between two nodes A and B does not consume the entire CPU time
(shared area) and a1 shares the CPU with a3. We use this policy but under some
conditions to avoid timing faults (no deadline within the shared range).

2.4 Application Control

The QMS controls applications using two main approaches.

Continuous. The average quantity of available resources for an application is
continuously tuned with nearly immediate effect, for instance modifying a sample
rate in the task flow on Fig. 1(a) (e.g., [5], feed-back adaptation in [6]).

Discrete. The quantity of available resources is modified only at predefined
points of the program Fig. 3 (e.g., [8]). The execution of an application is a path

P. Vienne J.-L. Sourrouille, and M. Maranzana,

Modeling Distributed Applications for QoS Management 175

Fig. 3. Execution graph

in a graph whose nodes are decision points. At each decision point a mode is
chosen and does not change until the next decision point.

Continuous control is suitable for periodic applications. Discrete control asso-
ciated with planning reservation allows enforcing end-to-end deadlines for events
whose arrival law is unpredictable: on Fig. 3, when the treatment starts, it is
guaranteed to reach End through one path.

PMQDA is based on discrete control, which induces constraints on managed
applications: at each decision point, an application must wait till the QMS com-
municates the next execution mode, hence a decision point is also a waiting point
used by the QMS to enforce the schedule of applications.

3 Modeling the Application

The model of an application is its representation from the middleware point
of view: its specification in terms of QoS. This model provides all the required
information to handle the application QoS during execution.

Figure 4 shows a simplified static model of an application (same form as in
[18]). An application is composed of a sequence of SchedulingUnits whose dead-
lines are computed from an origin (scheduling time) and an offset (the specified
delay). A scheduling unit consists of a sequence of Activities. An activity is a
treatment that can be executed in several Modes, each with a utility. Within
a mode, an activity is a sequence of Steps, each specifying its resource require-
ments. A step runs on a unique node whereas an activity may be distributed. In
the model, a LocalApplication stands for a logical node that will be associated
with a physical node at run-time.

3.1 UML Model of an Application

Table 2 illustrates themodel of an application starting (after initialization) on node
A with the acquisition of N medical images on the physician request (next acqui-
sition Fig. 5). Each image is immediately transmitted on node B (with or without
compression) and displayed. Finally, the set of images is analyzed on node B.

At the step level, a rendezvous (RdV) synchronizes the execution of two steps
belonging to the same activity but to different local applications:

176

Hardware

LocalApplicationApplication

SchedulingUnit

delay : Time
waitForEvent : Boolean

0..1 #next

pathId

1 #schedulingUnits1

#activities

{ordered}

Resource

global : Boolean
exclusive : Boolean

Mode

utility : Integer

1

#mode

1
modeId

RequiredResource
appendedQuantity : Single
releasedQuantity : Single#resource

1

RdV

trigger : Boolean
parallel : Boolean

#refRdV

Step
#steps

1..n

{ordered}

#requirements0..n

#rdv0..1

Activity

1..n

Fig. 4. Simplified static model of an application

Table 2. Example of an application with activities distributed on two nodes

Scheduling unit Activity Mode Step Node
Initialize A Initialization 1 Load local application A

Load local application B
Sample (loop) A Asquisition 1 Acquisition A

1 Transmission1 A
Reception1 B

A Transmission 2 Compression A
Transmission2 A
Reception2 B
Decompression B

A Display 1 Display1 B
2 Display2 B

Analyze B

– A sequential rendezvous specifies that a step execution starts after the end
of a previous one,

– A parallel rendezvous specifies that two steps start simultaneously (syn-
chronous).

P. Vienne J.-L. Sourrouille, and M. Maranzana,

Modeling Distributed Applications for QoS Management 177

The model handles exclusive resources such as processor, and nonexclusive
resources such as memory. In both cases, a resource is either bounded to
a node or shared with several nodes (global). Moreover, a resource may be
preserved through several steps, whether or not they belong to the same ac-
tivity (or scheduling unit). For instance, memory must not be released before
the end of the last step that uses it. In the model, resource persistence is
specified by:

– appendedQuantity of additional resource to allocate at the beginning of the
step,

– releasedQuantity of resource to release at the end of the step.

The remaining quantity, which has not yet been released, is kept for the following
steps.

3.2 Execution Graph and Application Data Flow Control

The execution graph is a representation of a PMQDA application execution.
Figures 5 and 6 present the execution graph of the application depicted in table
2 using UML activity diagrams and two representation levels:

– Scheduling units sequence on Fig. 5,
– Detailed steps sequence on Fig. 6.

The whole set of execution paths and the distribution on local applications figure
on the execution graphs. Parallelization results in simultaneous execution of
treatments on different nodes. At step level (Fig. 6), the rendezvous specifies the
synchronization whereas at scheduling unit level (Fig. 5), the sequence depends
on events and paths.

When a scheduling unit ends up with a wait for event, the following scheduling
units are not scheduled (whatever the node) and their deadline origin will be
set to the event arrival time. Consequently, an application cannot wait for an
event within a scheduled treatment. In the sequence of scheduling units, the
model represents alternatives using paths. When there are several paths, the
application chooses at run-time. A path forbids the schedule of the following
scheduling units, like the wait for event, although the deadline origin does not
change.

[again]

[end]
Initialize Sample Analyze

paths

eventnext acquisition

Fig. 5. Global execution graph for the application table 2

178

 Local Application 1 Local Application 2

Acquisition

[2]

Transmission 1

Compression

Transmission 2

Reception 1

Reception 2

Decompression

Display 1

[1]

Display 2

[1] [2]

Parallel synchronization :
the following steps start
simultaneously as soon as
all the input transitions are
completed. This RdV is not
bounded to a local application.

Stereotype of
decision to

emphasize the

mode selection.

Fig. 6. Detailed execution graph for the scheduling unit Sample (The semantics of UML
is slightly modified to handle one initial and final state for each local application)

4 Implementation

4.1 Software Architecture

PMQDA relies upon three components: Global Manager, Local Manager and
Loader (Fig. 7). Loaders launch the applications and register their local part
identified by a type (which application description?), an identifier (which in-
stance?) and a role in the distributed application (which local application?).
Each loader asks its local manager to admit a local application. In case of suc-
cess (schedulable), the loader starts this local application (one loader per local
application). Once admitted, the application directly communicates with its local
manager. The Local Manager checks application sincerity (really used resources)

P. Vienne J.-L. Sourrouille, and M. Maranzana,

Modeling Distributed Applications for QoS Management 179

Fig. 7. PMQDA logical architecture (App. 1.0 means: instance identifier is 1 and local
application is 0)

on its node and acts as an intermediary between applications and global man-
ager. The Global Manager schedules and controls the execution of the whole set
of applications from their model. It selects the mode of activities in order to
optimize the QoS. Resource monitoring exploits and relies on properties of the
underlying layers that will finally supply the expected resource management.

After activation, an application executes its steps in the specified mode and
at the specified time. It reports the end of each step, the arrival of an event and
the selection of a path to its local manager, which forwards the information to
the global manager.

At present, the global manager centralizes the scheduling task. This approach
is preferable for distributed applications: as they require resources on several
nodes, their scheduling affects the schedule of local resources on different nodes.
Building the planning on a single node avoids any negotiation. In a decentral-
ized approach, each local manager schedules its own resources, which decreases
communication costs for applications running on a single node. On the other
hand, this approach leads to heavy communication costs for multi-node appli-
cations. Assuming that a master node manages the negotiation, for each step it
will ask each involved node for resource availability until an acceptable range be
found, and then broadcast the decision (e.g., 1 to N negotiation protocol of ISO
[13]). When ranges do not overlap, nodes may move already scheduled tasks,
which increases the number of communications (Fig. 2(b), scheduling manually
a1, then a2, and a3 shows moving issues). Moreover and even more important, a
solution is a path in a tree, and when backtracking is required to check another

180

path (new mode choice or resource affectation), the communication costs may
increase dramatically.

Anyway, as a great advantage of the middleware architecture, applications
are not involved in this choice and the approach could be changed independently.
We plan to test a mixed approach with resource credits for each local manager.

4.2 Scheduling Outlines

In the PMQDA context, the general problem of scheduling is NP-Hard and
cannot be solved dynamically, therefore a heuristic algorithm is proposed. This
solution is not as disadvantageous as it seems: since the distribution of events
is unknown (e.g., end of step, application admission), the optimum should be
assessed every time a new event occurs. Obviously, the sum of partial optimal
policies is not optimal and in this context, no policy can be optimal. To compare
heuristics is out of the scope of this paper, but we provide the reader with
outlines to complete the system overview.

Paths and events introduce uncertainties in the application progress. Conse-
quently, the schedule is computed from the current point to the next uncertainty.
Thus, at the first scheduling time of the application described in table 2, Initialize
and Sample are the only schedulable units because the next path is not specified
yet (Sample again or Analyze). The remaining schedule is built similarly as soon
as the uncertainty is removed.

To keep the maximal amount of available resources, and thus increase the
admission chances, we schedule at the latest time and in the mode with the
lowest utility [9]. As an advantage, when the system is stressed there is no need
for degradation, i.e., schedule modification. As soon as a node is idle, the next
ready step starts. When it is the beginning of an activity, it starts in the mode
with the highest utility that is schedulable. With this policy, scheduling may
only occur on admission request, uncertainty removal or end of step.

4.3 Integration in Development Process

An intrusive behavior adaptation policy requires the design of specific applica-
tions. First, the different operating modes must be designed. Second, the code
has to be instrumented so that the application executes each step at the expected
time.

Development Process. QoS management fulfills system requirements that
have to be identified at the very beginning of the development. At the highest
modeling level, the designer only needs to know the waiting points and paths
that separate treatments (Fig. 5). Then, according to the available alternatives
and the synchronization constraints, he/she builds the detailed model (Fig. 6).
Treatments are split into activities according to modes, while activities are split
into steps according to rendezvous and resource consumption changes. During
the design phase, the code implementing the interactions between application
and local manager is added. The API includes a few messages only (e.g., Register,

P. Vienne J.-L. Sourrouille, and M. Maranzana,

Modeling Distributed Applications for QoS Management 181

NextStep, EndOfApplication), sent through a proxy. It should be noted that QoS
management uses its owns communication channels.

Each mode is assigned a utility value. Within an application, utility values are
relative while they are absolute between applications: the level should depend
on application importance, and designers must tune values in the application
models. Resource consumption is estimated or measured from code, as in usual
real-time applications. To declare too high resource needs may be a bad strategy
since admission checks reject requests when resources are unavailable. To declare
too low resources is risky since the local manager checks application sincerity.

Regarding the development process, our solution has two major advantages:

– A modeling offering several abstraction levels hence leading to an easier
mastery of huge projects (scalability),

– The use of an UML standard tool with extension mechanisms such as stereo-
type for decision points, tagged values for resource requirements or hardware
characteristics (as in [18]). Afterwards, the model can easily be translated
into PMQDA format (XML).

Virtual Execution Environment. In fact, to introduce the required tasks
in the development process is less difficult than to split applications into ac-
tivities and to design their alternatives. For this reason, we have implemented
a virtual execution environment that emulates applications according to their
model. Thus, the designer can test various node distributions offline, identify the
resource availability issues and add alternatives to solve them. This simulation
has been implemented using IBM-Rational Rose RealTime and its distributed
communication layer (Connexis). The application model proves to be suitable for
scheduling and emulation. The designer may watch the planning and the event
trace in real-time on a separate node, while application models are displayed to
check results.

Within a true time simulation context, the application prototype properties
widely depend on underlying layers (OS, communication, etc.). This tool aims
to bring out guidelines since only estimations of durations are available. A more
precise adjustment in the target environment is still needed.

5 Related Works

Most QMS for distributed applications are implemented at the middleware level
and rely on standard underlying layers (best effort). In this section, only the
modeling aspect is taken into account among the numerous middlewares based
on agents [5][12], layers [17], middlewares such as CORBA [14] or hierarchical
services [6].

Two major categories of solutions are proposed to support QoS-aware ap-
plications [17]: reservation-based systems using resource reservation and admis-

182

sion control mechanisms, and adaptation-based systems attempting to adapt
the system behavior to available resources. Since our approach mixes these two
solutions, our modeling requirements are rather high.

Any model describes a point of view on a system, therefore a universal ap-
plication model for QoS description should encompass all the points of view.
The QoS Modeling Language (QML [11]) handles contracts but does not cope
with dynamic aspects. The profile “Schedulability, Performance and Time” (SPT
[18]) covers a broad area with special care to timing aspects. It is partitioned into
a general resource modeling framework, including time and concurrency mod-
eling, and analysis models including performance and schedulability analysis.
Compared with PMQDA, the SPT does not provide the notions of adaptation
and operating mode, and the execution model has only two levels (scenario and
step) while PMQDA holds three levels and alternatives for the activities (Fig. 4).
Any UML profile hence the SPT may be extended, but it deals with such a large
area that it seems difficult to force users to learn much more than they need. In
the terms of SPT, the proposed model is an analysis view1 easy to translate into
XMI-based UML interchange format. This way, we keep a customized and easy
to learn representation while conforming to the standard with a few additional
notions and a slightly different semantics (concurrency on activity diagrams).

To quantify utility is difficult. To avoid the issue, operating modes are or-
dered, then the utility is assigned the rank value: for instance a utility of 1 for a
sampling rate of 16kHz, 2 for 24kHz, etc. [16]. Many works do not handle explic-
itly the utility and use the rank [10], the importance of the application or a feasi-
ble region in the multi-dimensional space of resources [6]. To ease QoS optimiza-
tion, most works require the utility to vary in the same direction than resource
use. This constraint is mandatory with one resource dimension, but is not neces-
sary with several resources (see example Sect. 2). This constraint does not apply
to PMQDA that scans the modes in the utility order until a valid one is found.
The utility value represents a relative importance in case of admission conflict.

QoS models often have less parameters than PMQDA. For instance, in [10]
application behavior is set through a consumption level without explicit utility.
CPU time is assigned to periodical tasks via a simplex. Applications provide
the QoS middleware with a vector of requests sorted in decreasing preference,
while each request defines the CPU needs in a given time interval. In return, the
application is informed about the admission controller’s choice. This exchange
is typical of intrusive policies. A finer description of the behavior in the form
of a path to follow depending on the mode is given in [8]. They define flows
with different QoS features (JPEG, MPEG...) and choose at run-time the best
path available. In [7], the path is chosen from the outside of the application
via a common adaptation interface. To improve and accelerate the search of
an acceptable path, data may be stored in a convenient form quicker to use
(performance base in [7], fault-tolerant plans in [3]).

1 “An analysis view is a simplified version of the complete model and is extracted on
the basis of a particular analysis or domain viewpoint”.

P. Vienne J.-L. Sourrouille, and M. Maranzana,

Modeling Distributed Applications for QoS Management 183

To sum up, PMQDA has a set of features that make it different from other
works: planning reservation, run-time admission check with a parameterized
deadline, application guided specification of paths at run-time, and execution
in synchronized operating modes on different nodes. Moreover, PMQDA deals
with aperiodic multi-resource systems.

6 Conclusion

To manage QoS explicitly, we propose to adapt dynamically the behavior of ap-
plications to execution context, under the control of a middleware that schedules
resource use. This approach applies to systems reacting to stimuli and ensures
end-to-end deadline for scheduling units at application admission, at event ar-
rival, and at path choice. Applications run in the mode with the greater utility
that is schedulable (heuristic). When the system is overloaded, PMQDA selects
alternatives execution modes and ensures that a distributed activity runs in the
same mode on related nodes.

PMQDA controls applications based on their model. This model describes
application resource requirements, operating modes, the context of each node or
hardware (e.g., bandwidth, memory), etc. The model is written using a slightly
extended UML, and abstraction levels make top-down modeling easier. However,
to design applications with alternatives modes is not usual, and to aid designers
we have developed a virtual environment that emulates the application from its
model, and implements the middleware on top of OS and communication layers.

Currently we have mainly validated the application model, and future works
will deal with the organization of the middleware (decentralization), and the
scheduling to tune the compromise effort/result. Moreover, additional experi-
ments are needed since the proposed QMS may a priori apply to areas such as
fault tolerance and even load balancing providing that appropriate

References

1. T.F. Abdelzaher, E.M. Atkins, K.G. Shin, “QoS Negotiation in Real-Time Systems
and its application to Automated Flight Control”, IEEE Trans. Computers, Vol.
49(11), 2000, pp.1170-1183

2. T.F. Abdelzaher, Kang G. Shin, Nina Bhatti, “Performance Guarantees for Web
Server End-Systems: A Control-Theoretical Approach”, IEEE Trans. Parallel and
Distributed Systems, Vol. 13(1), 2002, pp.80-96

3. E.M. Atkins , Tarek F. Abdelzaher , Kang G. Shin, “Planning and Resource Al-
location for Hard Real-time, Fault-Tolerant Plan Execution”, Proc. Int. Conf. on
Autonomous Agents (Agents’99), ACM Press, 1999, pp.244-251

4. C. Aurrecoechea, Andrew T. Campbell, Linda Hauw, “A survey of QoS architec-
tures”, Multimedia Systems, Vol. 6, Springer-Verlag, 1998, pp.138-151

5. S. Brandt, G. Nutt, T. Berk, J. Mankovich, “A dynamic Quality Of Service Middle-
ware Agent for Mediating Application Resource Usage”, RTSS, 1998, pp.307-317

6. I. Cardei, Rakesh Jha, Mihaela Cardei, Allalaghatta Pavan, “Hierarchical Archi-
tecture for Real-Time Adaptive Resource Management”, Middleware 2000, LNCS
1795, pp. 415-434

184

7. F. Chang, Vijay Karamcheti, “Automatic Configuration and Run-time Adapta-
tion of Distributed Applications”, IEEE. High Performance Distributed Comput-
ing, 2000, pp.11-20

8. S. Chatterjee, J. Sydir, B. Sabata, T. Lawrence, “Modeling Applications for Adap-
tive QoS-based Resource Management”, IEEE High-Assurance System Engineering
Workshop, 1997, pp.194-201

9. J.L. Contreras, J.L. Sourrouille, “A Framework for QoS management”, TOOLS’39,
IEEE press, 2001, pp.183-193

10. H. Domjan, T.R. Gross, “Extending a Best-Effort Operating System to provide
QoS Processor management”, IWQoS 2001, pp.92-106

11. S. Frolund, J. Koistinen, “Quality of Service Specification in distirbuted object
systems”, Distributed Systems Engineering Journal, Vol. 5(4), 1998, pp.179-202

12. J. Huang, Y. Wang, F. Cao, “On Developing Distributed Middleware Services
for QoS- and Criticality-Based Resource Negotiation and Adaptation”, Journal of
Time-Critical Computing Systems, Kluwer, 1999, Vol. 16, pp.187-221

13. Information Technology - Quality of Service - Guide to Methods and Mechanisms
- ISO/IEC 13243 Draft 1.0 — Project JTC1 21.57, 15/10/1997

14. D.A. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali, D.C. Schmidt, “Application
of the QuO Quality-of-Service Framework to a Distributed Video Application”,
Distributed Objects and Applications (DOA), 2001, pp.299-308

15. C. Lee, D Siewiorek, “An Approach for Quality of Service Management”, CMU-
CS-98-165

16. C. Lee, John Lehoczky, Ragunathan (Raj) Rajkumar, Dan Siewiorek, “On Quality
of Service Optimization with Discrete QoS Options”, RTAS, 1999, 276-286

17. Li, K. Nahrstedt, “QualProbes: Middleware QoS Profiling Services for Configuring
Adaptive Applications”, Middleware 2000, LNCS 1795, pp.256-272

18. “Schedulability, Performance and Time”, Final adopted specification, 2002
19. R.E. Schantz, J.P. Loyall, C. Rodrigues, D.C. Schmidt, Y. Krishnamurthy, I.

Pyarali, “Flexible and Adaptive QoS Control for Distributed Real-Time and Em-
bedded Middleware”, Middleware 2003, LNCS 2672, pp.374-393

20. “Unified Modeling Language Specification”, OMG, Version 1.5, 2003

P. Vienne J.-L. Sourrouille, and M. Maranzana,

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 185 – 198, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Accuracy of Performance Prediction for EJB
Applications: A Statistical Analysis

Yan Liu and Ian Gorton

National ICT Australia,
1430, NSW, Australia

{jenny.liu, ian.gorton}@nicta.com.au

Abstract. A challenging software engineering problem is the design and im-
plementation of component-based (CB) applications that can meet specified
performance requirements. Our PPCB approach has been developed to facilitate
performance prediction of CB applications built using black-box component in-
frastructures such as J2EE. Such deployment scenarios are problematic for tra-
ditional performance modeling approaches, which typically focus on modeling
application component performance and neglect the complex influence of the
specific component technology that hosts the application. In this paper, an
overview of the PPCB modeling approach is given. Example results from pre-
dicting the performance of a J2EE application are presented. These results are
then statistically analyzed to quantify the uncertainty in the predicted results.
The contribution of the paper is the presentation of concrete measures of the
confidence an architect can have in the performance predictions produced by
the PPCB.

1 Introduction

Distributed component-based technologies such as the Java 2 Enterprise Edition
(J2EE) and .NET have become important infrastructure technologies for building
multi-tier applications. The overall performance of such component-based applica-
tions depends on a number of factors. These include the implementation of the sup-
porting component container, the architectural decisions taken in the design of com-
ponents, application-specific deployment configurations, and the specific application
client behavior [6]. It is consequently challenging for software architects to design a
system with a priori confidence that it will perform well enough to meet its require-
ments.

Consequently, architects are forced develop prototypes to evaluate the performance
of an application design [2,6,11]. For complex applications, this can be time-
consuming and expensive. We believe that the process of predicting the performance
of a component-based system based on an architecture-level design could signifi-
cantly reduce the engineering costs and risks of a deployed system failing to meet
performance requirements.

In related research, performance modeling has proved a useful approach [1,
3,4,14,17,20,24] . A performance model can represent the underlying architecture as
well as application behavior in terms of its performance characteristics. A common

186 Y. Liu and I. Gorton

practice is to build a prototype and use this to obtain measures for the values of pa-
rameters in the model [12]. However, for a complex application, this is expensive and
time-consuming.

Therefore, we propose using benchmarking to overcome these difficulties. Bench-
marking is the process of running a specific program or workload on a machine or
system and measuring the resulting performance [21]. In PPCB (Performance Predic-
tion of Component Based systems), benchmarking is used to provide values for cer-
tain parameters in the performance model that is used for prediction. However, the
abstraction inherent in the performance model and approximations in the benchmark-
ing measurements introduce uncertainty in to the resulting predictions.

The major contribution of this paper beyond that of [15] is the use of statistical
methods to analyze the predicted performance for an application. This provides statis-
tical evidence of the accuracy of the results of the PPCB. The results of the analysis
reveal a high level of accuracy in the predictions. To the best of our knowledge, this is
the first time such high levels of confidence in performance predictions of applica-
tions executing on black-box based component infrastructures have been published.

The structure of this paper is as follows. Section 2 gives an overview of the PPCB
approach. Section 3 presents the example application on which we conduct perform-
ance prediction using PPCB, along with some sample performance prediction results.
Section 4 details the statistical analysis, and Section 5 discusses related work.

2 PPCB Overview

The essence of our framework shown in Figure 1 is combining performance modeling
and benchmarking techniques. This enables performance prediction at the design level
of software applications that are based on specific component technology. A compre-
hensive description of the performance model is beyond the scope of this paper, and
can be found in [15,16]. Given a component technology, such as an implementation
of Enterprise JavaBeans (EJB), the approach has the following steps:

1. Modeling. We establish a general model P for the chosen technology, by identify-
ing the main components of the system, and noting where queuing delays occur.
This abstracts details of the infrastructure components and their communication.

2. Calibrating. The model has to be calibrated for a specific architecture before it can

be used to predict performance, so we must develop the function Af , which is the

function used to calibrate the generic performance model P to specific architecture
A. An architectural choice can be mapped to a set of infrastructure components and
their communication pattern [4]. The operations of service components can be fur-
ther aggregated into computing modules. Calibrating the performance model
means deriving mathematical models with parameters characterizing those comput-
ing modules.

3. Characterizing. The purpose of characterizing an application is to determine the
load that an application places on the underlying component infrastructure when
the application takes the form of architecture A. For a given application, we can de-
termine how often each component is executed. This depends on their business

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 187

logic, which tells us how often methods are called, and what operations are per-
formed by which computing modules.

4. Benchmarking. The above produces a performance prediction for the designed
system in the form of an equation with parameters. Some of the parameters repre-
sent observable or tunable features of the configuration, but other parameters re-
flect internal details of the black-box middleware platform that hosts the applica-
tion components. We therefore implement a simple application, with minimal busi-
ness logic and a simple architecture, on the target middleware platform, and meas-
ure its performance. Solving the performance model corresponding to the simple
application allows us to determine the required parameter values, which we de-
scribe as the performance profile of the platform.

5. Populating. The parameters of the middleware platform profile can be substituted
into the performance model of the designed application, giving the required quanti-
tative prediction of performance of that application.

General
performance model

Architecture
specific model

Performance profile

Abstract of
Infrastructure

behavior

Architecture
pattern

Calibrating

Modeling

Benchmark
suite

Middleware Domain

Scenario based
behavior

Target application

Benchmark ing

Application specific
model

Characterizing

Calibrating

Populating

Application Domain

Performance metrics of
the target application

with specific architecture

Output

Fig. 1. The performance prediction framework

The PPCB approach provides a solution to overcome the difficulties in populating
the performance profile of component infrastructure, or middleware. Instead of proto-
typing the system and measuring it, the explicit parameter values of the performance
model are obtained by benchmarking a simple application. These benchmark results
can then be applied to any applications that execute of the benchmarked middleware
platform.

188 Y. Liu and I. Gorton

3 Example Results

The PPCB approach has been applied to predict the performance of a J2EE applica-
tion, Stock-Online. In this section, we briefly describe the benchmark design and how
benchmarking can be integrated with the performance model of an infrastructure to
predict the overall performance of an EJB-based application. The predicted results are
summarized and they are used in the next section for statistical validation.

3.1 Predicting Stock-Online Performance

Stock-Online [5] is a simulation of an on-line stock-broking system. It supports six
business transactions and enables users to buy and sell stocks, inquire about the up-to-
date prices of particular stocks, and get a holding statement detailing the stocks they
currently own. There are four database tables to store details for accounts, stock
items, holdings and transaction history.

We have implemented Stock-Online with EJB components. Three distinct imple-
mentations have been created that employ very different component architectures.
These are:

1. One architecture solution uses Container Managed Persistence (CMP) entity
beans, applying the standard EJB design pattern of a session bean as a façade to
entity beans. A single session bean implements all transaction methods. Four
entity beans, one each for the database tables, manage the database access.
Transactions are container managed. We refer this architecture as CMP.

2. The second architecture optimizes the access mechanism to persistent data in
the CMP architecture for business scenarios with intensive read-only opera-
tions. This architecture is implemented using the Read-Mostly (RM) EJB de-
sign pattern [19]. Read-only and read-write operations are separated into two
entity beans, which are mapped to the same database data. Read-only opera-
tions have direct access to cached data inside the container, thus reducing the
overhead of access to the database. The synchronization of cache data and per-
sistent data is managed by the container.

3. The third architecture leverages an Optimistic Concurrency Control [13] (OCC)
algorithm. A container that supports OCC does not hold a lock for any persis-
tent data. The ACID transaction properties are managed by the database system.
This increases the concurrency of the application when there is no confliction
of two simultaneously running transactions.

The deployment environment for each of these solutions is identical. It consists of
a commercial J2EE application server as the container for Stock-Online and a com-
mercial relational database for persistence. The clients, J2EE container and database
each execute on separate machines. The client requests are from web server hosted
components under a full, sustained request load. Given this scenario, it is desirable for
an architect to determine the level of performance that the system can provide under
load without building its solution.

Basically, we have developed a queuing network model of the J2EE application
server infrastructure and calibrated it for the three different component architectures.
The approach to characterize an application behavior from scenarios is developed and

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 189

presented in [15,16]. This produces a performance prediction for the designed system
in the form of an equation with parameters, which we describe as the performance
profile of the platform. These parameters capture the performance characteristics of
the internal behavior of an EJB container. The parameters and the descriptions are
listed in Table 1 below. Importantly, the performance profile and its value are ob-
tained by benchmarking without access to the implementation and deployment of
Stock-Online.

Table 1. Performance profile of an EJB container

TSINIT The service time of the container’s initialization process

Ts The service time of a session bean’s operation, which doesn’t include
the time waiting for replies from nested beans’ operations

To To = TSINIT + Ts

T1 The service time for the container to access the entity data in its cache

T2 The service time of the container to active/passivate an entity bean
instance to secondary storage

Tcreate The service time of the container to create an entity bean object

Tremove The service time of the container to remove an entity bean object

Tload The service time to load an entity data into the container

Tstore The service time to store updates of an entity data

Tinsert The service time to insert a new record of an entity into the database

Tdelete The service time to remove a record of an entity from the database

3.2 Benchmark Design

Component technologies leverage many standard services (e.g. security, transactions) to
support application development. The benchmark scenario is thus designed to exercise
the key elements of a component infrastructure involved in the application execution.

We have designed and implemented a benchmark suite for modeling the perform-
ance of EJB-based applications. The benchmark suite consists of four modules,
namely a workload generator, benchmark application, monitoring utility and profiling
toolkit in Figure 2.

Thread
Manager

Database
Connection

Pool

EJB AS

DB

Nam ing Security Transaction Persistence

Bean
Conta iner

JMX (Remote API)

JVM (JVM Profiler Interface)

Client
Emulator

Mon itoring
Utility

Profiler
Toolkit

Fig. 2. A benchmark suite for EJB technologies

190 Y. Liu and I. Gorton

The benchmark clients simulate active requests from proxy applications, such as
servlets executing in a web server. Under heavy workloads, this kind of proxy client
has an ignorable interval between two successive requests 1. Its population in a steady
state is consequently bounded1. Hence the benchmark client spawns a fixed number of
threads for each test. Each thread submits a new service request immediately after the
results are returned from the previous request to the application server. The ‘thinking
time’ of the client is thus effectively zero. The benchmark also uses some utility pro-
grams to collect the measurement of black-box metrics, such as response time and
throughput.

The implementation of the benchmark application involves a session bean object
Agent and an entity bean object Record. Container managed persistence (CMP) is
used for entity beans and transactions are container-managed. The example collabora-
tion diagram in Fig 3 shows the benchmark application scenario for read /write and
get Records.

Client Agent :
SessionBean

2: find Record bean by PK

Record :
EntityBean

1: read

5: return value

3: getvalue4: return value

Client Agent :
SessionBean

Record :
EntityBean

1: get records

2: find Records by Non-PK

3: Iterate to get value

4: get value
in every
iterat ion

5: return value
6: return records

Fig. 3 Benchmark application events

A monitoring utility is implemented using the Java Management Extensions
(JMX) API. It collects performance metrics for the application server and the EJB
container at runtime, for example the number of active server threads, active database
connections and the hit ratio of the entity bean cache.

A profiling toolkit OptimizeIt [18] is also employed. OptimizeIt obtains profiling
data from the Java virtual machine, and helps in tracing the execution path and col-
lecting statistics such as the percentage of time spent on a method invocation, from
which we can estimate the percentage of time spent on a key subsystems of the J2EE
server infrastructure. Profiling tools are necessary for COTS component-based sys-
tems, as instrumentation of the source code is not possible.

3.3 Predicted Performance

The explicit parameter values for the performance profile are obtained by solving the
performance model using the inputs measured from benchmarking. Then the popu-lated
performance profile provides inputs for predicting the performance of Stock-Online.
This relationship is shown in Figure 4. Detailed solutions are is presented in [15, 16].

1 A web server has configuration parameters to limit the active workload. For example, Apache

uses MaxClient to control the maximum number of workers, thus the concurrent requests to
the application server are bounded.

.

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 191

 PStock-Online(f
A({Performance profiles}), {Stock-Online workload parameters})

Performance profiles

Benchmark measures

Pbenchmark(f
A({Performance profiles}), {benchmark workload parameters})

Fig. 4. Dataflow of the Stock-Online performance prediction

0

200

400

600

800

1000

1200

1400

50 100 200 300 400 500

No. of clients (N), read-only intensive

R
es

p
o

n
se

 t
im

e
(R

)
in

 m
s CMP Measured

CMP Predicted

RM Measured

RM Predicted

OCC Measured

OCC Predicted

Fig. 5. Stock-Online Performance (Read-only intensive business model)

0

200

400

600

800

1000

1200

1400

1600

50 100 200 300 400 500

No. of clients (N), doubled updates

R
es

p
o

n
se

 t
im

e
(R

)
in

 m
s

CMP Measured

CMP Predicted

RM Measured

RM Predicted

OCC Measured

OCC Predicted

Fig. 6. Stock-Online Performance (Doubled updates business model)

In order to assess the accuracy of the model’s predictions, we have implemented
and measured the performance of Stock-Online for each of the three different imple-

192 Y. Liu and I. Gorton

mentations (i.e. CMP, RM and OCC). Below, we present two sample sets of results
that are used for subsequent analysis:

• Figures 5 and 6 compare actual versus predicted performance of Stock-Online
for a single J2EE server configuration (in this case, utilizing 20 threads). The aim
is to infer how accurate the future predictions are based on the measured sam-
ples. The predicted client response time for the three architecture models under
different workload with the same server configuration is shown.

• Figures 7, 8 and 9 compare the predicted and measured optimal response times
as the J2EE thread pool setting is varied, under a stable client workload.

4 Statistical Analysis

As can be seen in Figure 5 to Figure 9, the predicted performance, while close, is not
100% accurate. Hence we need to assess the effectiveness of the overall approach.
Hence, similarly to [9, 10], two appropriate statistical methods are used:

• Statistical intervals for the first data set.
• Linear correlation analysis for the second data set

4.1 Statistical Intervals

Statistical intervals can be used to quantify the uncertainty in the sample data [8,23].
We use tolerance intervals to estimate the boundary of the prediction error. A toler-
ance interval covers a fixed proportion of the population with a stated confidence [8].
The prediction error is defined as:

Measured

MeasuredPredicted
Error

−=

We calculated the statistical intervals as follows:

Step 1: Use Shapior-Wilk normality test to determine if the original distribution of
Error is a normal distribution. We use the shapiro.test function in the S-Plus[22]
library MASS. IF it is normal distribution, then DO Step 3.
Step 2: Transform the original data using the BoxCox function. The BoxCox func-
tion in S-Plus library MASS computes the profile likelihood function for the largest
linear model to be considered as a guide in choosing a value for λ , which will then
remain fixed [22].

=
≠−=
0log

0/1)()(

y

y
y λ (1)

Step 3: The statistical software SInt [8] is used to calculate the tolerance interval for
the (transformed) normal distribution of Error. As we are interested in the upper
bound of the Error given a confidence level, only a one-side tolerance interval is
considered.

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 193

The statistical intervals of prediction error can be also calculated as distribution-
free intervals. [8] shows that a distribution-free interval (if one exists) will generally
be longer than a corresponding interval based on a particular distribution.

The original statistical error metrics are listed in Table 2, 3 4 for the three architec-
ture models CMP, RM and OCC respectively. The statistical results, for example the
statistical intervals of the CMP model in Table2, can be interpreted as:

90% of CMP model prediction error will not exceed roughly 14.75% and we have
95% confidence level that this upper bound is correct.

This gives a concrete measure of the confidence an architect can have in the
predictions produced by the performance modeling and benchmarking approaches
we have developed for black box component-based applications. The statistical
intervals show that the accuracy of the RM and OCC models are a little lower than
the CMP model. One reason is that both the RM and OCC models do not cover the
overhead of invalidating an entity bean cache element involved in conflicting
transactions. This is mainly due to a technical limitation. These parameters de-
pends on the internal implementation of the EJB container, and currently the moni-
toring and profiling tool can not identify the operations involved in these functions
and their associated performance metrics. According to [17] however, a prediction
error under 30% is still acceptable for capacity planning of a system.

Table 2. Statistical intervals for the CMP model

0

10

20

30

40

E
rr

o
r

(%
)

-540
-490
-440
-390
-340
-290
-240
-190
-140
-90
-40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lambda

p
ro

fi
le

 li
ke

lih
o

o
d

95%

Maximum likelihood
lambda=0.3

Original distribution of Error boxcox outputs

Statistical intervals Value

Sample size N=61
Sample mean x = 4.97

Sample standard deviation s = 5.19
Percentile of the population p = 90%

Confidence level = 0.95
Upper-bound of Error UB = 14.75

194 Y. Liu and I. Gorton

Table 3. Statistical intervals for the RM model

0

10

20

30

40

E
rr

o
r

(%
)

-350

-300

-250

-200

-150

-100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lambda

p
ro

fi
le

 li
ke

lih
o

o
d

95%

Maximum likelihood
lambda=0.5

Original distribution of Error boxcox outputs

Statistical intervals Value
Sample size N=61 N=61
Sample mean x = 14.72 x = 14.72
Sample standard deviation s = 9.31 s = 9.31
Percentile of the population p = 80% p = 50%
Confidence level = 0.95 = 0.95
Upper-bound of Error UB = 25.15 UB = 15.21

Table 4. Statistical intervals for the OCC model

0

20

40

60

80

100

E
rr

o
r

(%
)

-350

-300

-250

-200

-150

-100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lambda

p
ro

fi
le

 li
ke

lih
o

o
d

95%

Maximum likelihood
lambda=0.1

Original distribution of Error2 boxcox outputs

Statistical intervals Value
Sample size N=61 N=61
Sample mean x = 13.05 x = 13.05
Sample standard deviation s = 20.40 s = 20.40
Percentile of the population p = 80% p = 68%
Confidence level = 0.95 = 0.95
Upper-bound of Error UB = 26.16 UB = 14.66

2 The high Error in the circled samples is due to the ratio of transactions rolled back is high

when the ratio of updating transaction increases. The overhead of rolling back transaction is
not covered in the model.

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 195

4.2 Linear Correlation

Linear correlation analysis can measure the strength of the linear relationship between
two variables. The thread pool size for an EJB container is an important tuning op-
tion. Our model can be used to predict the performance under different settings of the

Table 5. Linear correlation between predited and measured response time

Model Correlation Coeffi-
cient R

Coefficient of de-
termination R2 p-value

CMP 0.9919 0.9837 0
RM 0.9981 0.9962 0
OCC 0.9984 0.9769 0

0

100

200

300

400

500

600

700

5 10 15 20 25 40 50 100

Thread pool size

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Predicted Measured

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 40 50 100
Thread pool size

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Predicted Measured
(a) 100 clients (b) 400 clients

Fig. 7. The response time vs. thread pool size (CMP)

Optimal Predicted
Value (255 ms) at
20 threads

Optimal Measured Value
(234 ms) at 20 threads

Optimal Predicted
Value (1020 ms)
at 20 threads

Optimal Measured Value
(956 ms) at 20 threads

0

50

100

150

200

5 10 15 20 25 30 40 50 100
Thread pool size

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Predicted Measured

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 40 50 100

Thread pool size

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Predicted Measured

(a) 100 clients (b) 400 clients

Fig. 8. The response time vs. thread pool size (RM)

Optimal Predicted Value (96
ms) at 20 threads

Optimal Measured Value
(107 ms) at 20 threads

Optimal Predicted Value
(389 ms) at 20 threads

Optimal Measured Value
(425 ms) at 20 threads

196 Y. Liu and I. Gorton

0

100

200

300

400

500

600

5 10 15 20 25 30 40 50 100

Thread pool size

R
e
sp

o
n
s
e
 T

im
e
 (

m
s
)

Predicted Measured

0

500

1000

1500

2000

2500

5 10 15 20 25 30 40 50 100

Thread pool size

R
e
sp

o
n
s
e
 T

im
e
 (

m
s
)

Predicted Measured

(a) 100 clients (b) 400 clients

Fig. 9. The response time vs. thread pool size (OCC)

5 Future Work and Conclusions

In the Prediction-Enabled Component Technology (PECB) framework, the quality of
the reasoning framework is evaluated by statistical intervals [9,10]. The accuracy of
the prediction model is higher than ours, however, their performance model is devel-
oped for a white-box system and detailed measurements for each component can be
easily discovered through source code instrumentation. This is not possible in our
example of using a black-box COTS component technology. However, we hope our
models may influence component technology vendors to expose APIs that allow the
measurements of important parameters required for performance prediction.

Optimal Predicted
Value (204 ms) at
25 threads

Optimal Measured Value
(203 ms) at 25 threads

Optimal Predicted
Value (844 ms) at
25 threads

Optimal Measured Value
(877 ms) at 25threads

models indicate a good linear relationship between predicted and measured response
time under the various settings of thread pool size. The statistical results can be inter-
preted as, for example in the CMP model, approximately 98.37% of the variation in
the values of predicted response time is accounted for by a linear relationship with
measured response time and the confidence level is 95%.

performance under a given workload. The linear relationship between predicted and
measured response time is assessed to indicate the accuracy of the predicted optimal
value. The calculation is shown in Table 5. The correlation coefficients of the three

thread pool size, and consequently be used to find the optimal value with the best

In this paper, we statistically evaluate our PPCB approach for predicting the per-
formance of black-box CB applications. The results demonstrate that 80% of the pre-
diction error is within upper bound of 27% with a confidence level of 95%. This pro-
vides statistical evidence to the architects that our approach is accurate enough for
predicting the performance for different architectures at the design level.

While these results are encouraging, and to our knowledge, the first that focus on
black-box components that have been presented in the literature, they are of course

 Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis 197

based on a small sample. More evidence is required that the approach is broadly ap-
plicable and scalable. To this end we are working to:

• Enhance the PPCB approach to cover additional architectural features such as
asynchronous messaging, widely varying message sizes and complex distrib-
uted transactions.

• Test the approach on more complex applications.
• Design software engineering tools that hide the complexity of the modeling and

analysis steps in PPCB from an architect.

Acknowledgements

National ICT Australia is funded through the Australian Government's BackingAus-
tralia's Ability initiative, in part through the Australian Research Council. We would
also like to thank Professor Weber from the University of Sydney for his advise on
statistical models.

References

1. Balsamo, S., Personè, V.D. N. Inverardi, P.: A Review on queueing network models with
finite capacity queues for software architectures performance prediction, Performance
Evaluation, Volume/Issue: vol 51/2-4, (2002) 269 – 288.

2. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and scalability of EJB applica-
tions, Conference on Object Oriented Programming, Systems, Languages and Applica-
tions (2002) 246-261.

3. Chen, S.; Liu, Y.; Gorton, I.; Liu, A.: Performance Prediction of Component Based Sys-
tem, Journal of Systems and Software, In Press (2004).

4. Gomaa, H., Menascé, D.A.: Design and performance modeling of component interconnec-
tion patterns for distributed software architectures, Proc. Workshop on Software and Per-
formance (2000) 117-126.

5. Gorton, I.: Enterprise Transaction Processing Systems, Addison-Wesley (2000).
6. Gorton, I., Liu, A.: Performance evaluation of alternative component architectures for EJB

applications, IEEE Internet Computing, vol.7, no. 3, (2003) 18-23.
7. Gorton, I., Liu, A., Brebner, P.: Rigorous evaluation of COTS middleware technology,

IEEE Computer, vol. 36, no.3 (2003) 50-55.
8. Hahn, G. J.; Meeker, W.Q.: Statistical Intervals: a guide for practitioners, New York: John

Wiley & Sons, 1991
9. Hissam, S. A., Moreno, G., Stafford, J., Wallman, K.: Packaging predictable assembly,

Component Deployment: IFIP/ACM Working Conference, LNCS 2370 (2002) 108-224.
10. Hissam, S. A., Hudak, J., Ivers, J., Klein, M., Larsson, M., Moreno, G., Northrop, L., Pla-

kosh, D., Stafford, J., Wallnau, K., Wood, W.: Predictable Assembly of Substation Auto-
mation Systems: An Experiment Report, Second Edition, CMU/SEI-2002-TR-031, ESC-
TR-2002-031 (2002).

11. Juse, K.S., Kounev, S., Buchmann, A.: PetStore-WS: measuring the performance implica-
tions of web services, Proceedings of the International Conference of the Computer Meas-
urement Group (2003).

198 Y. Liu and I. Gorton

12. Kounev, S., Buchmann, A.: Performance modeling of distributed E-Business applications
using queuing petri nets, Proc. of IEEE Int’l Symp on Performance Analysis of Systems
and Software (2003).

13. Kung, H. T. and Robinson, J. T.: On optimistic methods for concurrency control, ACM
Transactions on Database Systems, vol. 6, No. 2, (1981) 213 - 226.

14. Lazowska, E., Zahorjan, J., Graham, S., Sevcik, K.: Quantitative System Performance,
Prentice Hall (1984).

15. Liu, Y.; Fekete, A.; Gorton, I.: Predicting the performance of middleware-based applica-
tions at the design level, 4th International Workshop on Performance and Software Engi-
neering (2004) 166-170.

16. Liu, Y.: A Framework to Predict the Performance of Component-based Applications, PhD
Thesis, University of Sydney, Australia (2004).

17. Menascé, D., Almeida, V.A.F.: Scaling for E-Business: Technologies, Models, Perform-
ance, and Capacity Planning. Prentice-Hall, 2000.

18. OptimizeIt Suite, http://www.borland.com/optimizeit/
19. Rakatine, D.: The Seppuku Pattern, 2002. http://www.theserverside.com/patterns/

thread.tss?thread_id=11280
20. Rolia, J. A., Sevik, K.C.: The method of layers, IEEE Transaction on Software Engineer-

ing, vol. 21, no. 8. (1995) 689-700.
21. Saavedra, R. H., Smith, A. J.: Analysis of benchmark characteristics and benchmark per-

formance prediction, ACM Transactions on Computer System, vol. 14, no. 4, (1996)
344-384.

22. Venables, W. N.; Ripley, B. D.; Modern Applied Statistics with S-Plus, Springer, (2002).
23. Walpole, R. E., Myers, R. H.: Probability and Statistics for Engineers and Scientists, Fifth

Edition, Macmillan Publishing Company (1993).
24. Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Rendezvous

Network Model for Performa of Synchronous Client-Server-Like Distributed Software,
IEEE Transactions on Computers, vol. 44, no. 1, January (1995) 20-34.

A Proposal for Evolution Driven Middleware
Architecture for eBusiness Process Execution

Yuji Sakata and Shigeyuki Matsuda

NTT Data Corporation, Research and Development Headquarters,
21-2, Shinkawa 1-chome, Chuou-ku, Tokyo 104-0033, Japan

Abstract. Abstract. This paper proposes the EDMA (Evolution Driven
Middleware Architecture) for eBusiness process execution. EDMA is a
middleware architecture which is adaptable for eBusiness evolution based
on workflow management system and web services technologies. In or-
der to build the highly adaptable architecture, we pay attention to an
evolutionary model of eBusiness. We show characteristic phases of the
eBusiness evolution and illustrate that EDMA is so adaptable that mid-
dleware implementing EDMA need not be replaced but instead be added
with components to comply with the phases of the eBusiness evolution.
In addition, we introduce our implementation of a workflow engine and
researches related to EDMA.

1 Introduction

Recently, eBusiness, a business transaction by means of Internet technologies,
has been a significant factor in increasing the benefits of businesses and their
partners. Specifically, performing complex and various transactions electroni-
cally brings great benefit to current businesses. Therefore, a technology for com-
municating various partners over the Internet and executing a process of busi-
ness transactions automatically has become necessary. Nowadays, web services
have been common technologies for communicating various partners over the
Internet. A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically, Web Services Definition Language),
and other systems interact with the web service in a manner prescribed by its
description using SOAP[1]-messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards [1]. Because
of its interoperability, web services technologies bring about an effective solution
to the method of communicating with the partners which implement their eBusi-
ness software using various platforms (.Net and J2EE) or languages (C++, Java,
Perl and so on). On the other hand, many standards for describing the process
of business transaction (hereafter, we will call the definition described by these
standards the ’process definition’) are proposed [3], for example, BPEL4WS
[4], WS-CDF [5] and BPML [6]. Each standard should not be compared with
the others among these overlapping standards only by their process modeling

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 199–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 Y. Sakata and S. Matsuda

paradigm. They are compared advantageously relative to business models. Be-
sides, each process definition is typically required to be interpreted and executed
by its specific run-time middleware. Therefore, if a company tries to improve its
business model, it may be required to replace all of its middleware. The total
replacement of the middleware will prevent the company from agilely improving
the business model. In this paper, we propose an evolution driven middleware ar-
chitecture (hereafter, we will call it EDMA). As explained above, adaptability
to a business evolution is a crucial requirement for a process execution middle-
ware. In order to build a highly adaptable architecture, we pay attention to an
evolutionary model of eBusiness. The rest of this paper is structured as follows.
In section 2, we start with specifying the five characteristic phases of a typical
evolutionary eBusiness model. In section 3, we abstract the requirements for each
phase and derive the architectural features from the requirements. Moreover, we
designate the architecture of the middleware and illustrate how the usage of the
designated architecture simplifies upgrading the middleware to correspond to the
eBusiness evolution. Then, we introduce the workflow engine which implements
the designated architecture in section 4. Finally, we will discuss related works in
section 5 and conclude this paper in section 6.

2 Business Use - EDI Like Purchasing

In this section, using a typical eBusiness case, we explain the characteristic
phases of eBusiness evolution. Because we study a process execution middleware
independent of any business domain, these phases are abstracted by focusing on
the evolution of the static structure or the generation procedure of business pro-
cess, which is a set of one or more linked activities and exchanged business docu-
ments between business partners which collectively realize a business objective or
policy goal. Please note the concrete behavior of each activities executed by the
business process, for example ordering, confirmation and catalogue-distributing,
is ignored in the context of this model.

2.1 Description - A Purchase Transaction

Company A is a large manufacturer of computers. It purchases components of
computers from a number of component manufacturers, which have already set
up mutual trading relationship. Company X is one of these component man-
ufacturers and is also doing business with many other customers providing its
components. Note that this case is based on binary transactions to make the
explanation simple. Company A already has several internal systems supporting
the purchase of components, including a system for the approval of purchase, an
ordering system and a payment system. Additionally, company A and company
X are connected with each other by a proprietary VAN (Value Added Networks)
and are utilizing EDI for their transactions. Currently, buyers in company A who
want to purchase components (hereafter, we may call them just the ’buyers’)
must utilize their internal systems and proprietary EDI applications manually
following a business process defined by company A. Because the cost for using

A Proposal for EDMA for eBusiness Process Execution 201

EDI is relatively high, Company A desires to introduce eBusiness technologies
into its purchase transactions.

2.2 Five Phases for eBusiness Evolution

In this clause, we show five phases through which eBusiness applied to the pur-
chase transaction of company A is going to evolve. We show a brief description
of each phase in ’description’ section. Then, we explain the motivation and limi-
tation for shifting from the previous phase, stopping at the phase and shifting to
the next phase in ’motivation/limitation’ section. This explanation is informa-
tion that indicates whether and how long each phase exists in a given business
domain.

Phase I: Static Transaction with Specific Partners

Description. ‘Static transaction with specific partners’ phase is the phase in
which a fixed business process for the purchase transaction with specific partners
is automated by a process execution middleware. Company A and company X
have beforehand agreed on the format of exchanged documents and the order
of exchange. The left part of Fig. 1 depicts the transaction model in this phase.
The middleware is responsible for managing the business process and interacting
with both internal systems and systems of a component manufacturer.

Motivation/Limitation

– A primary motivation for shifting to this phase is increasing the efficiency
of a regular business process such as a purchase transaction. Automated
processing is very efficient because it is much cheaper than making system-
dependent documents by hand and also is more accurate.

– Phase I means that automating process will start only with specific compo-
nent manufacturers that will be integrated. This is the case where numer-
ous agreements with each component manufacturer are required to realize
the process automation because of the diversity among the manufacturers’
systems and the procedures of transactions. Therefore, this phase may be
skipped when the interfaces among manufactures are very similar or have
already been standardized.

Phase II: Static Transaction Among Participants

Description. ’Static transaction phase among participants’ phase is the phase
in which company A is able to integrate with multiple components manufactur-
ers. Moreover, each components manufacturer integrates with multiple computer
manufacturers. The right part of Fig. 1 depicts the transaction model of this
phase.

Motivation/Limitation

– In the previous phase, company A must agree with each specific partner
on how to interact with its systems because of the diversity. However, in

202 Y. Sakata and S. Matsuda

payment

approval
Company A,B,C...

Company X,Y,Z...

fixed purchase
business process

confirmation

catalogue

Company A
Company X...

fixed purchase
business process

static transaction with specified partners

ordering

static transaction among participants

confirmation

catalogue

Fig. 1. The evolution of static transaction

the case where numerous manufacturers want to join transactions, every
manufacturer is hardly able to maintain the methods of interaction with
all transacting partners. In such an environment, organizational autonomy,
which means that ’the organization cannot be controlled by another through
(some) interactions’ [7], is essential. Therefore, a primary motivation for
shifting from the previous phase is further increasing the efficiency of regular
business transaction according to fixing (or establishing) the way to integrate
a business process with partner’s systems.

– In this phase, buyers are supposed to select manually from which manufac-
turer they purchase components because information used in order to select
the adequate manufacturer automatically is not sufficient (note that bulk
transaction history data and data mining technology to analyze the bulk
data may be required for serious selection).

Phase III: Role-Based-Dynamic Transaction

Description. ‘Role’ is a unit of characteristic and expected transaction behav-
ior as a partner. ’Role-based-dynamic transaction’ phase is the phase in which
company A automatically selects transacting components manufacturer at the
start of executing a business process using the information. The left part of Fig.
2 depicts the transaction model of this phase.

Motivation/Limitation

– A primary motivation for shifting to this phase is not an increase in the
efficiency of executing business process but an optimization of its business
transaction itself. In previous phases, the manufacturer from which buyers
purchase components is selected statically or manually. However, information
that is used to select the component manufacturer such as a components’
price, a possible time limit of delivery and so on would be much and com-
plex. Moreover, such information is likely to change dynamically. Therefore,
selecting a partner at the start of a transaction would mean realizing more
adequate transaction.

A Proposal for EDMA for eBusiness Process Execution 203

fixed purchase
business process

Company A

select a partner of desired
role

role-based-dynamic transaction

(same role)

purchase
transaction

Company A
fix process & partner

function-based-dynamic transaction

Fig. 2. The evolution of dynamic transaction

– In this phase, the smallest dynamically changing unit is ’role’, for example,
’component-seller’, ’component-buyer’, ’settlement gateway’ and so on.

Phase IV: Function-Based-Dynamic Transaction

Description. ‘Function’ is an atomic procedure executed by internal or external
systems. ’Function-based-dynamic transaction’ phase is the phase in which com-
pany A automatically composes its business process and selects a transacting
partner to achieve an optimal transaction using the information at the start of
a transaction to achieve requirements for it. The right part of Fig. 2 depicts the
transaction model of this phase.

Motivation/Limitation

– A primary motivation for shifting to this phase is the optimization of trans-
action more effectively according to fixing of adequate business process us-
ing dynamic information just at the start of a transaction. When eBusiness
evolves to be more open, it is not easy that all manufactures in an indus-
try agree on the fixed business processes for a specific kind of transaction.
Namely, semantically identical business processes for the transaction may
be provided by different manufacturers. Therefore, in the paradigm of the
previous phase, the company A should prepare various business processes in
advance to have a potentially better choice available. It is, however, hard to
maintain. Therefore, composing a business process from requirements of a
transaction is required.

– In this phase, the smallest dynamically changing unit is ’function’.
– In this phase, company A fixes a complete business process at the start of a

transaction. However, if the transaction takes for a long term, the optimal
business process may change and differ from the one at the start of its
transaction - it is the problem in some cases.

204 Y. Sakata and S. Matsuda

adaptive transaction

determine a process
adaptively

redo
change

Fig. 3. Adaptive transaction

Phase V: Adaptive Transaction

Description. ‘Adaptive transaction’ phase is the phase in which the process exe-
cution middleware determines the subsequent adequate functions and processes
after every execution of a function according to the situation of that instance.
Fig. 3 depicts the transaction model of this phase.

Motivation/Limitation. A primary motivation for shifting to this phase is a fur-
ther effective optimization of transaction by enabling company A to re-evaluate
the optimal process while in progress of executing the current determined pro-
cess. This ’step by step’ approach of executing the process enables company A to
select the optimal decision. Moreover, it helps to execute a process which cannot

Table 1. The charasteristic of eBusiness phase from the viewpoint of business

Time

I II III IV V
static

transaction
with specified

partners

static
transaction

among
participants

role-based-
dynamic

transaction

function-based-
dynamic

transaction

adaptive
transaction

the primary
motivation

the model of
interaction
with partners

specified static adaptive

the smallest
dynamically-
changing unit

role functionno change

eBusiness
phase

the increasing in the efficiency
of regular business processes

the optimization of business

dynamic

A Proposal for EDMA for eBusiness Process Execution 205

be determined completely at the start time and handle an accidental error that
occurs during the execution of the process.

2.3 The Phases Through eBusiness Evolution

Table 1 summarizes requirements on each phase of the eBusiness evolution based
on the discussion above.

Five phases are mainly distinguished by how to select partners interacting
with and the smallest dynamically-changing unit.

3 Evolution Driven Middleware Architecture for
eBusiness Process Execution

In this section, we discuss about suitable architecture of the process execution
middleware in each phase.

3.1 Architectural Requirements of Middleware for eBusiness
Process Execution

At first, we abstract the considerable requirements and their solutions for each
phase. Subsequently, we find the functional components that the process exe-
cution middleware consists of. Table 2 shows a summary of the architectural
requirement and solution for each business phase. The details will be explained
below.

Conventionally, Phase I and II are distinguished as a static integration and
phase III, IV and V are distinguished as a dynamic integration. In phase I,
a process execution middleware is required at least to interact with both in-
ternal/partner’s systems implemented by various technologies and to enact the
workflow for a transaction. SOAP [1], which is a technology of standard messag-
ing, is certain to help to integrate all systems independent of their implementa-
tion. Besides, the middleware must consist of a workflow engine (defined in [9]).
Moreover, the centralized control of a workflow by a stand-alone workflow engine
is adequate as the execution model of business process in view of increasing ef-
ficiency due to the manageability. In phase II, choreography, that is, an explicit
description of the interface (typically described by WSDL [10]) of functions and
their executing order among organizations, is required. Since the organization
should not control behind the interfaces of others, distributed workflow engine
would be deployed at each organization. Accordingly, workflow distilling, which
allows an organization to derive the fragment of its own workflow description
from the choreography of a joined transaction, is required. In phase III, a primary
requirement would be how to pick up the optimal partner among possible part-
ners in desired ’role’ automatically and how to execute a business process with
picked partners. What information is effective and how this is evaluated in order
to select an optimal partner is application-dependent. Therefore, only the seman-
tics must to be specified for meta-data to express a transaction condition formally
(for example, price, time limit of delivering and quality of or partners of transac-
tions). The process execution middleware must interpret the formal requirement

206 Y. Sakata and S. Matsuda

Table 2. The architectural requirement and solution for each eBusiness phase

Time

eBusiness phase I II III IV V

considerable
requirement(s)

1. automation
of process
2.implementati
on
independency

organizational
autonomy

optimal partner
detection

optimal
workflow
determination

adaptiveness

technological
solution(s)

1. workflow
management
2. standard
messaging
(SOAP)

1.chereography
2.Concrete
interface
(WSDL)
3. workflow
distilling

1. semantics for
static property
2. registry
(UDDI)

1. semantics for
dynamic
systems
2. process
composition

 policy

stand-alone

dynamic
binding

dynamic
binding and
workflow

adaptive
binding and
workflow

process execution
model in a
transaction

typically called 'static'
integration

typically called 'dynamic' integration
usage model and

characteristic
functions of

process execution
middleware

distributed

function organizationmiddleware same role setfunction organizationmiddleware same role set

of the organization and find an adequate partner from a database storing formal
representations of possible partners. In phase IV, instead of selecting an optimal
partner playing a role, the way to fix optimal partners and the way to compose
a process are needed. It means that the formalized model for the dynamics of a
system is required. Situation Calculus [8] is one of such formalized models. The
characteristic of the middleware of phase V is the adaptiveness of executing a
business process, which means that the process execution middleware can de-
termine the subsequent function in the resultant situation in order to meet the
desired requirements of the organization. We regard policy as a significant tech-
nology to achieve this characteristic. In the context of this paper, policy means
’information which influences the behavior of an object’ [11]. Policy controls not
just a transaction but always influences all of the behavior of an application.

A Proposal for EDMA for eBusiness Process Execution 207

Workflow EngineWorkflow Engine

Workflow DistillerWorkflow Distiller Requirement
Handler

Requirement
Handler

Workflow
Composer
Workflow
Composer

Web Services
Explorer

Web Services
Explorer

Web Services
Registry

Web Services
Registry

Web services
handler

Web services
handler

ApplicationApplication

Workflow
Repository
Workflow
Repository

Web Services

ApplicationApplication ApplicationApplication

Policy
Manager
Policy

Manager

meta-data

EDMA

Fig. 4. Evolution driven middleware architecture

3.2 EDMA

We propose EDMA (Evolution Driven Middleware Architecture). The architec-
ture is architecture for integrating internal systems and those in other orga-
nizations. This architecture has the characteristics that a suitable addition of
components enables the middleware to fit eBusiness evolution explained above.
The EDMA, which is depicted in Fig. 4, consists of the following components.

Workflow Engine. Workflow Engine is the component which controls an instance
of the given pre-defined workflow definition.

Workflow Repository. This is the components which stores available workflows
for transactions. Storing available workflows increases reusability of workflows.

Web Services Handler. This is the component which interacts with internal
and external systems by means of Web services. This component is responsible
for transmitting SOAP message and transforming implementation-independent
SOAP message into data dependent of EDMA implementation.

Workflow Distiller. This component is responsible for ’distilling’ a workflow tem-
plate which is an abstract workflow that enables the workflow engine to inter-
pret from a given choreography. The distilled workflow is stored in the workflow
repository. Application may add detail function to the distilled template.

Web Services Registry. This is the registry which stores the meta-data of avail-
able web services and enables Web Services Discoverer and Web Services Com-
poser to search and find web services fulfilling given conditions. This may comply
with UDDI (Universal Description, Discovery and Integration) specification [12]
as a way to discover meta-data of web services.

Web Services Discoverer. This component is a client of web services registry. It
searches for web services satisfying meta-data from Requirement Handler.

208 Y. Sakata and S. Matsuda

Requirement Handler. This is a module for interpreting a request from a human
requestor.

Workflow Composer. This is a component for composing a workflow to satisfy
a request from Requirement Handler using web services retrieved from Web
Services Registry.

Policy Manager. This component is used in phase V. It forces the application
to observe defined policies.

3.3 The Usage Model of EDMA

We show the adaptability of EDMA, that is, we illustrate that the middleware
implementing EDMA need not be replaced and it only needs additional compo-
nents to go through eBusiness evolution.

Fig. 5 depicts collaborations between components in each phase to execute a
transaction. In Fig. 5, filled squares are required components. An arrow means
an interaction with components and application. Moreover, numerals appended
to the arrow means the order of interaction in a transaction. Note that com-
ponents are gradually added to the middleware as eBusiness evolves through
the phases. In phase I, application invokes Workflow Engine by a pre-defined
workflow definition, which may be read from Workflow Repository. Workflow

WEWE

WDWD RHRH

WCWC

WSEWSE WSRWSR

WSHWSH

ApplicationApplication

WRWR

Web
Services

PMPM

each components are described using abbreviations

1. invoke2. read

4.execute
3. execute

WEWE

WDWD RHRH

WCWC

WSEWSE WSRWSR

WSHWSH

ApplicationApplication

WRWR

PMPM

34

6
5

WEWE

WDWD RHRH

WCWC

WSEWSE WSRWSR

WSHWSH

ApplicationApplication

WRWR

PMPM

2

3

6
5

WEWE

WDWD RHRH

WCWC

WSEWSE WSRWSR

WSHWSH

ApplicationApplication

WRWR

PMPM

WEWE

WDWD RHRH

WCWC
WSEWSE WSRWSR

WSHWSH

ApplicationApplication

WRWR

PMPM

1. distiller

2. store

Phase I Phase II

Phase III Phase IV

Phase V

4-1. select

4-2. get requirement

4-3. get meta-data

2

6
5

4-1

3-1. get requirement

4-2

3 compose workflow

3-2. get meta-data

2

7. re-evaluate
workflow

11. set Requrements

4-3

3

6
5

4-1

3-1

4-2
3-2

1

4-3

WE: Workflow Engine
WR: Workflow Repository
WSH: Web Services Handler
WD: Workflow Distiller
WSR: Web Services Registry

WSE: Web Services Explorer
RH: Requirements Handler
WC: Workflow Composer
PM: Policy Manager

Fig. 5. Collaboration between components in each phase

A Proposal for EDMA for eBusiness Process Execution 209

Engine executes the workflow and web services by means of Web Services Han-
dler. In phase II, the workflow definition is distilled from choreography among
participants of a transaction. It proves the confirmation to executing a whole
transaction that each participant distills its workflow from a total description of
the choreography. In phase III and IV, application does not fix all details of the
workflow definition but set its requirements to Requirements Handler. Web Ser-
vices Explorer and Workflow Composer fixes at the start time of a transaction
using data stored in Web Services Registry. In phase V, the executed workflow
is re-evaluated whether an application observes policies after every execution of
a function and updated.

4 An Implementation and a Related Research of the
EDMA

In this section, we introduce the implemented framework and our on-going re-
search related to EDMA. ΣServ is the framework which fulfills EDMA and
achieves Phase I of eBusiness evolution. Shortly, it mainly consists of Workflow
Engine, Workflow Repository and Web Services Handler. Besides, ΣServ has
some additional components to have quality for industry use (for example, re-
liable messaging, data format conversion and various legacy system supports).
Hereafter, we explain the details of ΣServ. ΣServ is middleware that executes a
business process where the processing procedure is decided beforehand, that is,
it achieves static service integration. Moreover, it conforms to the Web service.
Moreover, this middleware runs on Java. ΣServ consists of four functions.

1. ΣServ FlowManager: This is a Workflow Engine that controls the business
process. The business process is executed according to the processing pro-
cedure for deciding beforehand. It corresponds with Workflow Engine and
Workflow Repository. Besides, it is based on eCo-Flow [13]

2. ΣServ TrustMessage: This is a component to connect between the middle-
ware with web services. Moreover, reliable transmitting of messages is en-

Legacy System

Web Services

J2EE Application Server Platform

ΣServ TrustMessage

ΣServ FlowManager

Workflow Engine
Workflow Repository

ΣServ TransInfo
Data/Format Conversion

High reliable
Web Services Handler

Legacy Integration

System Adaptor

Fig. 6. ΣServ framework

210 Y. Sakata and S. Matsuda

abled. This conforms to the specification of SOAP and ebXML Messaging
Service Specification [14].It corresponds with Web Services Handler.

3. ΣServ TransInfo: This component has a function of data conversion and the
format conversion.

4. System Adaptors: The system that integrates might not necessarily con-
form to the Web service, and integrates with the legacy system. Accord-
ingly, ΣServ implements adaptors to connect it with the system of non-Web
service.

4.1 On-going Researches

We are now implementing the prototype for IV based on ΣServ. Here, we intro-
duce our research for web services composer.which plays an important role to
realize the middleware for phase IV.

Workflow Distiller. We have studied a method for extracting the UML activity
diagram which a specific partner must execute from the whole business process
among business partners describing as a single process using UML activity di-
agram with swimlane (Fig 7). The distilled workflow is stored in the workflow
repository.

Workflow Composer. We have proposed a method for composing a workflow
definition regarding the state change of an application [15]. This method is
overviewed as follows. Beforehand, every web service is formally defined as what
state of an application its function can affect and what state it will change the
original state of the application into as a function axiom and the axiom is stored
in Web Services Registry as meta-data of web services. Then, the current state
and the desired state are formalized as a requirements sentence. This formaliza-
tion is achieved by means of Situation Calculus [8].Workflow Composer inferred
the adequate workflow from the function axioms and the requirement sentence.

company A company B company C

…

b2

a1 b1

c2

c1…

…

…

<i>b4

<r>a1 <r>b1

<r>c2

<i>c1

<r>c3

<i>b2

<r>b3
<i>a2

<i>a3

…
…

…
…

…

company A company B company C

(a) an activity diagram describing the
choreography as a single process

(b) the extracted activity diagrams for each
company.

extract

Workflow
Repository

Fig. 7. The function of workflow distiller

A Proposal for EDMA for eBusiness Process Execution 211

5 Related Works and Discussion

Currently, there are many efforts on academic or industry research about the
methodology for managing software evolution, enterprise application or compo-
nent technologies. They are related to our proposal, so we show these works
as follows. Gnatz proposed a process framework, which is modularly structured
and defines the concept of process patterns in order to correspond to change
and evolution of development processing [16]. Shortly, this study focuses not
on re-usable run-time modules but on the development process. Hartwich pro-
posed the architecture for enterprise application where the evolution of the ap-
plication is mainly a matter of reconfiguration in [17]. Levi demonstrated CBDi
(component-based development and integration) for mapping a business archi-
tecture to a component-based software architecture in [18]. Rausch outlined a
well-founded common system model for componentware that copes with the be-
havioral aspects using explicit requirements/assurance-contracts formalization
in [19]. The framework proposed in [20] is an eBusiness middleware comprising
RDF-based languages to model processes, services, and service composition, and
supporting technologies to generate executable workflow models. This research
does not mention the suitable framework complying with eBusiness evolution.
Here, we discuss the suitability of our proposed model for eBusiness evolution.
The model of Phase I and II has already been adopted. In the early period of
eBusiness, companies that have adopted the model early realized inter-company
transactions over the Internet by means of various methods and rules which they
fixed independently. This period corresponds to Phase I. Now, a typical success-
ful example of Phase II is RosettaNet [21]. RosettaNet standardized business
processes and a dictionary that is used for business documents. The standards
of RosettaNet are widely adopted by Information Technology, Electronic Com-
ponents and so on. The evolution into phase III and subsequent phases will arise
in the future. Based on ΣServ and our research, we are going to implement a
prototype system for phases III and IV. Technically, the shift to these phases
will be possible. However, in these phases, it is important how participants join-
ing a transaction will negotiate a contract and will manage trust between them,
because determining a business process dynamically requires estimating the risk
based on the trust in the participants. As for phase V, it is still unclear whether
the ’step by step’ approach of executing the process in this phase is adequate
for future eBusiness, but we think this approach will have a fairly large demand.
For example, this approach will be needed in a case where environment around
a company changes considerably as time goes by and a case where the result of
an activity is non-deterministic and subsequent activities are affected by that
result. This approach can be used in B2C domain, for example for reserving a
flight or a hotel during a trip. The shift to this phase will probably occur in
the eBusiness domain as well. Our proposal of the middleware architecture is a
starting point for realizing adaptable middleware for eBusiness process execu-
tion. The functional requirements of a transaction are not all we must discuss as
to middleware architecture. As eBusiness evolves, non-functional requirements

212 Y. Sakata and S. Matsuda

would be more significant. Therefore, concerning our proposal, we should also
consider requirements about security, trust and the quality of services.

6 Conclusion

This paper proposes EDMA (Evolution Driven Middleware Architecture) for
eBusiness process execution. The feature of EDMA is adaptable architecture con-
sidering eBusiness evolution. Therefore, EDMA is so adaptable that the middle-
ware implementing EDMA need not be replaced but be added with components
to go through eBusiness evolution.

References

1. Martin Gudgin et al, ”SOAP Version 1.2 Messaging Framework”,
http://www.w3.org/TR/soap12-part1/, June 2003.

2. David Booth et al, gWeb Services Architectureh,
http://www.w3.org/TR/2003/ WD-ws-arch-20030808, August 2003.

3. David Hollingsworth, ”The workflow reference model: 10 years on”, The Workflow
Handbook 2004, Future Strategies Inc., 2004, accessible from
http:// www.wfmc.org/standards/docs/ Ref Model 10 years on Hollingsworth.pdf.

4. Tony Andrews et al, ”Business Process Execution Language for Web Services
(BPEL4WS) Version 1.1”, http://www-106.ibm.com/developerworks/library/ws-
bpel/, May 2003.

5. Nickolaos Kavantzas et al, ”Web Services Choreography Description Language
(WS-CDF) Version 1.0”, http://www.w3.org/TR/ws-cdl-10/, April 2004.

6. Assaf Arkin, ”Business Process Modeling Language(BPML)”, http://www.bpmi.
org/bpml prop.esp, November 2002.

7. Jari Veijalainen et al, ”Research Issues in Workflow Systems”, Proceedings of
8th ERCIM Database Research Group Workshop, October 1995, accessible from
http://www.ercim.org/publication/ws-proceedings/8th-EDRG/veijal.ps.

8. Raymond Reiter, gKnowledge in Actionh, ISBN: 0262182181, MIT Press, 2001.
9. Workflow Management Coalition, ”Workflow Management Coalition Terminology

and Glossary”, WFMC-TC-1011 in WfMC public documents, Feb. 1999, accessible
from http://www.wfmc.org/standards/docs/TC-1011 term glossary v3.pdf.

10. Roberto Chinnici et al., ”Web Services Description Language Version 2.0 Part 1:
Core Language”, http://www.w3.org/TR/wsdl20/, March 2004.

11. M. Sloman et al, ”An Architecture for Managing Distributed Systems”, Proc. 4th
IEEE Workshop on Future Trends of Distributed Computing Systems, 40–46, 1999.

12. Tom Bellwood et al, ”UDDI Version 3.0”, UDDI.org, July 2002.
13. T. Hatashima et al, ”Web Services Processing Platform - eCo-Flow”, SAINT 2002,

Workshop, Jan. 2002, pp. 186-195.
14. Ian Jones et al, gebXML Message Service Specification Version 2.0h, OASIS

ebXML Messaging Services TC, Feb. 2002.
15. Yuji Sakata et al, ”A Method for Composing Process of Non-deterministic Web

Services”, Proceedings of 2004 IEEE International Conference on Web Services (in
press), July 2004.

16. Michael Gnatz et al., ”Towards a Living Software Development Process Based
on Process Patterns”, Proceedings of the Eight European Workshop on Software
Process Technology number2077, 2001.

A Proposal for EDMA for eBusiness Process Execution 213

17. Christph Hartwich, ”An Enterprise Application Architecture for Reconfigurable
Distributed Process Topologies”, the Proc. of the 23nd Intl. Conf. on Distributed
Computing Systems Workshops, 2003.

18. Keith Levi and Ali Arsanjani, gA Goal-driven Approach to ENTERPRISE COM-
PONENT IDENTIFICATION AND SPECIFICATIONh, COMMUNICATIONS
OF THE ACM Vol. 45 No. 10 p45, Oct. 2002.

19. Andreas Rausch, ”Software Evolution in Componentware using Require-
ments/Assurances Contracts, ICSE 2000, 2000.

20. Lerina Aversano et al., gIntroducing eServices in Business Process Modelsh, the
fourteenth International Conference on Software Engineering and Knowledge En-
gineering, July 2002.

21. RosettaNet: http://www.rosettanet.org/

Experience with Lightweight
Distributed Component Technologies in

Business Intelligence Systems�

Leticia Duboc1, Tony Wicks1, and Wolfgang Emmerich2

1 Searchspace Ltd., 80-110 New Oxford Street,
London, WC1A 1HB, U.K

{l.duboc, t.wicks}@searchspace.com
2 Dept. of Computer Science,
University College London,

WC1E 6BT, U.K
w.emmerich@cs.ucl.ac.uk

Abstract. Business Intelligence (BI) systems address the demands of
large scale enterprises for operational analytics, management information
and decision support tasks. Building such applications presents many
challenges. They must support complex and changing data models, have
fast turnarounds, present an up-to-date and accurate view of information
and provide extensibility mechanisms for new analyses.
Widely adopted distributed object systems, such as J2EE can be heavy-
weight and inflexible when applied to the described scenario. This paper
presents our experience when developing a data analysis system that
applies a combination of lightweight distributed component technologies
available for Java.
These technologies are combined in an event-based architecture that an-
ticipates constant changes to analysis algorithms in short time frames
and provides the ability to maintain correlated analyses in a consistent
state. The resulting architecture is extensible, easy to deploy, highly con-
figurable and has a very flexible data model. We compare this approach
with existing distributed object systems and evaluate its suitability to
provide business intelligence.

1 Introduction

BI encompasses a wide variety of tools and applications that can extract bet-
ter business understanding from raw, typically transactional, data. This variety
incorporates query and reporting tools, OLAP servers, data mining and data
integration tools [3]. While traditional BI solutions are appropriate for many
tasks, they are best aimed at the dimensions of a problem that remain relatively
static. Operational analytics tools, instead, seek to better extract meaningful

� This work is partially supported by tti Ltd. through KTP 3528.

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 214–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Experience with Lightweight Distributed Component Technologies 215

information based on self-tuning and learning, resource conservation and dy-
namic expansion to the true dimensionality of the problem [2]. They should
support complex data models, be extensible accumulate new analysis and allow
for scalability.

We are interested in systems that will be capable of handling volumes in
excess of 100 million transactions per day, accumulated over months or years.
Scalability is often achieved by distributing computational tasks across a number
of processors executing in parallel. This number can be increased to accommo-
date growing volumes, if the distributed software architecture has been cho-
sen carefully. In enterprise settings, such software architectures are often imple-
mented using distributed component technologies. Nevertheless, widely adopted
distributed object systems, such as architectures based on the Java 2 Enterprise
Edition (J2EE), can be inappropriate when applied to data intensive analysis
scenarios [17].

The main contribution of this paper is an account of our experience when
architecting PLUS, which is such an experimental environment to devise algo-
rithms to be deployed in Searchspace’s operational analytics solution. We ini-
tially investigated J2EE technologies, most notably the Enterprise Java Bean
component model (EJB) [17] and the Java Messaging Service (JMS) [18]. Instead
we present reasons why these technologies do not do justice to the data-intensive
problem domain and instead present a solution that uses more lightweight tech-
nologies. The main technologies used in this work were:

– Hibernate, an open source object/relational mapping toolkit for storing plain
old Java objects (POJOs) to a database [20].

– Java Management Extensions (JMX), which provides management capabil-
ities for a service-driven network [12].

– XDoclet, a meta-data template engine that parses the source code and gen-
erate artifacts such as configuration files and support code [21].

This paper is organized as following: Section 2 discuss some of the common
used tools and techniques for data analysis. Section 3 presents PLUS, the real
world system described in this paper, and its requirements. The following section
discusses the inadequacy of J2EE for the problem described. Section 5 briefly
introduces the software architecture that we have built using lightweight dis-
tributed component technologies. General observations and lessons learned are
drawn in section 6. We then conclude the paper in Section 7.

2 Background

Extracting meaningful information from large data sets is challenging. Selection
of suitable analysis approaches is non-trivial and comprises iterative processes of
experimentation and testing. For numerous reasons, a single analysis algorithm
will usually be split into a sequence of dependent steps. These steps reduce algo-
rithmic complexity, allow intermediate results to be available for other purposes,
such as user interrogation, and enable new analysis streams to use derived data

216

that may already be available in the system. Additionally, division of algorithms
has benefits in terms of system scalability and performance.

Layering analyses in this way introduces dependencies between algorithms
and additional complexity in terms of managing dependencies associated with
the data being processed. The challenge is therefore to create mechanisms that
can manage these dependencies such that a system provides guaranteed, con-
sistent results arising from changes to transactional, reference or other system
data feeds. These features are necessary to force results to be re-calculated when-
ever analysis algorithms are changed and, more importantly, must be correctly
managed to allow deployment into operational data changing environments.

A common approach is to use purpose built analytic tools, such as IDL [16]
and MATLAB [22], which enable users to perform ad-hoc analysis. These tools,
however, do not provide means to deploy an analysis in an operational environ-
ment. To reproduce a result with such tools, the analyst is forced to repeat the
whole process. Further they are not designed to scale to the type of environment
we are interested in. Vendor specific approaches have other degrees of limitation.
For instance, BusinessObjects is an analytical tool for summarization, visualiza-
tion and reporting, not designed to be used as a framework to generate analysis
that can be deployed operationally [5].

An alternative approach is to create analyses that can be deployed opera-
tionally. Commonly, this would include database stored procedures and OLAP
[23] tools, which are efficient and powerful query mechanisms. Nevertheless, those
solutions, by themselves, do not provide a means for distribution, sampling and
parallelism. In addition, they may introduce portability problems.

3 Problem Statement

PLUS is a data analysis environment that is used to extract meaningful infor-
mation from large amounts of transactional data. The system comprises data
loading, transformation and analysis. Report generation and information nav-
igation (e.g. drill-down capabilities) are performed by an external system, the
integration of which is beyond the scope of this paper. PLUS provides an envi-
ronment for data analysts to create, test, execute and store analysis algorithms.
Once defined and tested in PLUS, analyses can be deployed operationally in a
business environment.

PLUS is currently used in the banking/finance domain in applications such
as money laudering and fraud prevention. To date PLUS has been applied to
analyze two million transactions over a historical period of two years, comprising
over twenty gigabytes of data.

¿From an analytic point of view, PLUS is an experimental framework for the
development of analysis algorithms. Based on data held within the system, or ex-
ternally in a file, the analyst defines algorithms that are deployed into the PLUS
framework. Analyses can be divided in logical stages, having intermediate results
persisted for user consultation. Algorithms are stored by PLUS, so they can be
re-executed whenever required. As an example, the analyst can produce from

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 217

Fig. 1. Dependent Analysis

transactional data, summary information that may be reused by later analyses.
If new transactional data is added or a stage’s algorithm is modified, the system
automatically updates itself, maintaining a consistent state. Figure 1 illustrates
those dependencies. Note that analyses can also be dependent on multiple pre-
vious results.

From an operational point of view, PLUS deals with large amounts of trans-
actional data. Sampling capabilities allow analysis strategies to be tested before
being applied to the whole set of data. PLUS also provides a means to split
analyses into logical and operational units of work. Analyses can be executed in
parallel based on predefined analytical criterias. Dependencies are self-managed
using inversion of control. Each analysis know its own dependency and this infor-
mation is used by PLUS to compose individual components, so that changes can
propagate through the system. Further, PLUS provides instrumentation through
a web interface. Analysis parameters can be modified and their execution con-
trolled.

We now introduce the main requirements for PLUS that led to the selection
of the lightweight technologies described in this paper.

Support a Complex and Changing Data Model: BI systems often maintain months
or even years of detailed transactions. Analyzing such large volumes of data to
identify trends, patterns and exceptions is a very complex process. PLUS re-
quired a rich data model that allowed algorithms to take advantage of object-
oriented features, simplifing the analysis process. In addition, the data model
had to be independent of the underlying database schema, offering a level of
abstraction and simplifying its implementation.

Support for Experimentation: When dealing with large amounts of data, it may
not be clear from the outset how best to extract meaningful information. Ana-
lysts often try many different approaches in order to derive a comprehensive set
of algorithms capable of obtaining relevant information from the data.

PLUS architecture had to provide an efficient means for experimentation.
Such features included support for fast development, deployment and test of
analyses. The task of defining analysis algorithms had to be reduced to a min-
imum, ideally being tool-supported. The analyst should be able to concentrate
on the business logic and leave other time-consuming, non-core requirements to
be addressed automatically by the system.

218

Ability to Incorporate New Analyses: To experiment efficiently with data anal-
ysis strategies, analysts had to be able to extend the system to support new
algorithms with minimum effort. It was also a requirement that newly created
analyses could be easily deployed and immediately incorporated, without affect-
ing the running of the overall system.

Repeatable Process and Fast Turnaround: In general, BI systems deal with very
large amounts of data. Testing analysis algorithms against the whole data is,
most of the time, inefficient and unnecessary. The system had to offer sampling
capabilities and a means to store algorithms that, once tested and tuned, could
be applied to the whole data.

Maintaining Consistent and Accurate View of Data: Loading new data and
changing algorithms will, almost certainly, impact subsequent analyses. Immedi-
ately reflecting those changes is crucial, as BI systems should maintain a consis-
tent and accurate view of information. Given the complexity dependencies may
assume, manual update would be time consuming and error-prone.

PLUS had as a requirement to offer a means to automatically update de-
pendent analyses in face of changes. It is important, however, to bare in mind
that PLUS provides an environment for experimentation. Tests cannot impact
already deployed analyses. PLUS had therefore to allow the deactivation of de-
pendent analyses, while others are under test.

Execution Control: Control over execution should offer, at a minimum, the abil-
ity to start, stop, restart, resume and change analysis properties.

Scalability and Performance: Support for scalability is not unique to BI systems.
However, it is of significant importance, considering the large amount of calcula-
tions performed by algorithms. It was therefore a requirement that PLUS could
accommodate new analyses and update existing ones with minimum impact on
the system performance.

The requirements above demand a flexible, loosely coupled architecture that
can be easily extended. A component-based architecture comes as a natural
choice, allowing data analyses to be encapsulated by loosely coupled components
that can be plugged into the system with relatively little effort.

4 Business Intelligence Systems with J2EE?

Initial investigations of the implementation considered the J2EE specification
and, in particular EJB and JMS. At the time, like other Java developers, we
went through a learning curve. Currently, many of the issues we faced are well
documented in literature [19]. Our experience is summarized here:

– We considered using Entity Beans with container managed persistence for
the persistence layer in order to achieve data independence from the database

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 219

schema. This approach did not work because Entity Beans were designed to
be stateful distributed components, not lightweight domain objects. In addi-
tion, despite the support for relationships, EJBs impose restrictions on the
object format. Need for rich data models is not unique to BI systems and
for all such cases EJB container-managed persistence represents according
to [19] is limited by ”tight coupling, obscure development models, integrated
concerns and sheer weight”. PLUS had as a requirement the ability to persist
any Java object, so it could take advantage of OO/Java features, like inher-
itance and polymorphism. The use of EJB container-managed persistence
was therefore discarded.

– The structure of database tables often does not match the structure of the
logical entities they represent. Sometimes, even when objects differ from their
exterior design, internally they still need to take advantage of the database
structure to increase performance and achieve scalability. Examples include
logically separated entities that map to the same denormalized table, a sin-
gle entity that maps to multiple tables and given table (e.g. address) that
is referenced by other tables (e.g. order and customer) with no explicitly
relationship. CMP Entity Beans cannot naturally handle such cases [17].

– EJB QL allows additional finder methods to be defined in the Entity Bean
home interface, associating each one of them with an EJB QL query in the
deployment descriptor. This constraint means that the query logic had to be
defined in the entity bean. For PLUS, which have different analyses using
the same domain objects, the logic should be in the analysis class instead of
in the entity bean. This approach does not only simplify the entity bean, but
also makes analysis objects self-contained, providing a better understanding
of the encapsulated algorithm.

– The EJB specification does not include management capabilities, despite the
fact that it is implemented by some vendors. Using vendor specific features
is not desirable, as it compromises the portability of the solution.

– JMS supports asynchronous communication between distributed components.
It is integrated with the EJB specification through message beans that are
invoked when messages arrive on a queue. We considered implementing a
publish/subscribe mechanism to maintain system concistency, using JMS
and Message Beans. We concluded that the result would have been too
heavyweight. JMS is intended for asynchronous communication between dis-
tributed components. Therefore, messages usually carry heavy payloads and
have a significant deployment overhead for queues and their persistent stor-
age. We did not need these heavyweight mechanisms as all we required was
to trigger re-execution of dependent analyses.

One can argue that EJB could be integrated with JMX for management
purposes and with a flexible object persistence mechanism, such as Hibernate
or Oracle TopLink, for the data modelling [15, 20]. For PLUS, however, JMX
and Hibernate themselves are sufficient to address the system requirements, as
explained in Section 5.2.

220

5 Implementing BI with Lightweight Technologies

5.1 Overview of Technologies

Selecting the appropriate set of technologies to implement an architecture that
then fulfils the requirements is a challenging task, particularly since there is a
complex inter-dependency between the use of particular forms of infrastructure
and the architectures that they induce [8]. This section describes the technologies
used in PLUS, along with the reason they have been chosen.

JMX: Java Management Extensions (JMX) provide the flexibility, interoperabil-
ity, and dynamic management capabilities that are required for a service-driven
network [12]. This work uses the JBoss implementation of the JMX specifica-
tion. JBoss [10] is, itself, built around JMX. Our BI system architecture takes
advantage of JMX, by implementing data analysis algorithms as JMX services.

JMX is particularly useful in the BI setting because:

– systems need to maintain an up-to-date and accurate view of information.
Services can benefit from the JMX event-mechanism to re-calculate analyses
if other services modify data they are dependent upon.

– analysis services can be hot-deployed into the JMX Server, being instanta-
neously recognized and incorporated into the system.

– the JMX instrumentation mechanisms allow a fine-grained control over ex-
ecution and configuration of services.

Hibernate: Hibernate is an open-source object/relational mapping toolkit with
facilities for data retrieval and update, transaction management and database
connection pooling [20]. Hibernate was chosen in the PLUS architecture for the
following reasons:

– BI systems usually have a complex and evolving data model. Unlike EJB, Hi-
bernate provides a very flexible O/R mapping, designed to naturally persist
objects following the common OO/Java idiom.

– PLUS strives for flexibility, giving the analyst the option to run analyses
as simple standalone applications. Unlike the EJB persistence mechanisms,
Hibernate can run from outside an application server, as it does not impose
as many requirements on the objects to be persisted.

– Hibernate can be managed via a JMX Standard MBean, providing a conve-
nient means to modify database related properties through the JMX console.

– Hibernate provides tools for code, mapping files and database schema gener-
ation. Shifting effort from labour intensive tasks, not only lets the analyst fo-
cus on business related problems, but also gives support for experimentation.

XDoclet: XDoclet, officially termed a ”Javadoc metadata templating engine”,
parses metadata in Java source files and generates artifacts such as XML descrip-
tors and/or source code [21]. XDoclet is a natural choice when using Hibernate,
as mapping files and database creation scripts can be automatically generated
from tags in the Java object to be persisted.

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 221

Fig. 2. System overview

Sun has announced metadata/annotations in J2SE 1.5. This new feature pro-
vides the ability to associate additional data alongside Java classes, interfaces,
methods, and fields. This additional data, or annotation, can be discovered at
runtime using the Java reflection API [6]. For PLUS, the ability to query meta-
data at runtime would mean that some properties files would not have to be
generated. J2SE 1.5 metadata, however, does not replace XDoclet as a code
generator.

5.2 PLUS Architecture

Analyses dependent nature and support for experimentation and demand a flex-
ible and loosely coupled architecture. A natural choice is to implement analysis
stages as independent components that can be easily assembled. Communication
is achieved through events, in a similar approach to SEDA [14], which consists
of a network of event-driven stages connected by explicit queues. It combines
aspects of threads and event-based programming models to manage concur-
rency, I/O, scheduling, and resource management needs of Internet services.
The main distinction between both approaches is that while SEDA intends to
support a massive amount of concurrent user connections, PLUS focuses on data
processing.

Easy of deployment, extensibility and management of components is achieved
by layering PLUS on top of JBoss implementation of JMX. Components are
represented by JMX services that can be dynamically deployed, being immedi-
ately incorporated to the overall system. PLUS services are generic components
deployed with a set of analysis algorithms. As JMX services, components are
exposed by JBoss JMX console for instrumentation.

Hibernate is placed between the JDBC layer and JMX services. It pro-
vides a level of abstraction, allowing POJOs to be persisted in the database.
Free from constraints in input and output objects, analyses can take advan-
tage of a rich data model and OO features like inheritance and polymorphism.
The use of Hibernate is, however, not enforced. Analyses can have access to
the underlying JDBC layer if desired. Fig. 2 gives an overview of PLUS
architecture.

222

Services and Notification: In comparison with other distributed technologies
which often lead to complex interfaces between components, message or event
orientation creates a small number of simplified programming interfaces [9] [11].
This interfaces can be widely applied as the are not dependent on underlying
functionality and comprise simple message or event handlers, which allow simple
system re-configuration [7].

Given the amounts of data handled by PLUS, passing analysis results in
messages would be prohibitively expensive. In addition, analysis results are by
themselves useful information, which should be persisted. Hence, there is no need
for direct interaction between components. Analyses algorithms have knowledge
about their input and output data format, but are completely unaware of how
the input data has been produced. Simple events that informs of changes in the
input data are more appropriate than complex messages.

PLUS implements events through the JMX publish/subscribe mechanism.
Once notified, the service can update its analysis accordingly and inform other
services that are dependent on its results. Updated analysis results are there-
fore communicated through the system in an asynchronous way, maintaining
correlated analyses in a consistent state.

To receive notifications, a service needs to register as a listener of other ser-
vices that affect data it is dependent on. This includes already deployed services
and others that may be deployed in the future. The assembly of components
is implemented through inversion of control. Services have knowledge of the ta-
bles/hibernate objects they are dependent on. PLUS uses this information to
assemble components as publishers and subscribers. In addition, a newly de-
ployed service registers with the MBeanServer to be informed about the future
deployment of services that can change its input data. This mechanism guaran-
tees that dependencies are self-updated whenever a new service is deployed into
the system.

Furthermore, PLUS architecture provides a mechanism to avoid unnecessary
work when a notification is received. A service can recognise the changes in the
input data and update only the affected database rows or persistent objects
in the result. The ability to automatically maintain a consistent state offers
a significant support for experimentation. Hence, users do not have to worry
about downstream analyses that might be affected by the newly incorporated
algorithm.

Definition of Analysis Algorithms: As an experimental environment, PLUS should
provide a fast turnaround. Users must be able to quickly develop new analysis
strategies and understand existing ones. Code generation plays an important role
in rapid development and transparency. It can be used to avoid code duplication
and transparent models [19].

PLUS adopts a code-centric approach for the implementation of data loading
and analysis algorithms. This method requires from the analyst the implemen-
tation of a single Java task class. Each task encapsulates one analysis algorithm.
Tasks read data from an input source (e.g. file or tables), perform the required
computations and persist the results. The analyst embeds related meta-data in

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 223

/**
* @task.input input-entity="BranchVolFin"
* control-entities="AnalysisFin.productId"
*
* @task.output.java name="DistinctBranchVolFin"
* fields="batch:long:6,
* productId:long:10,
* transactionType:long:7,
* analysisType:String:20,
* score:double:10"
*/

public class DistinctBranchVolFinTask extends ServiceTask {
...

}

Fig. 3. Meta-data in task code

the javadoc comments of the class source code using XDoclet tags. Meta-data
represent relevant information about the task, such as analysis specific proper-
ties, output data format and dependencies. Automatic generation of code and
support file encourages experimentation by considerably reducing the amount of
work done by the analyst.

To illustrate, Fig. 3 shows the XDoclet meta-data in a task’s code. In this
example, the task is dependent on the data in the BranchVolFin table and gen-
erates its result in the DistinctBranchVolFin table. The output data format is
explicitly defined in the task.output.java tag. The control-entities tag is an
example of an analysis specific property.

XDoclet is used to automatically generate properties and configuration files,
Hibernate persistent classes, mapping files and even database tables. Most of
the code/file generation process did not have to be developed, as it came for free
with Hibernate and its integration with JMX. Fig. 4 illustrates part of the output
Hibernate object that XDoclet derived from the tags in Fig. 3.The Hibernate
object is simply a javabean object with XDoclet tags defining the format of the
columns in the database. The Hibernate mapping file is an XML document that
maps fields in the Java class to columns in the database. Tables themselves are
automatically created when analyses are deployed into the PLUS framework.

One can argue that code generation, as used in PLUS, combines concerns that
should be logically separated, such as code and database schema design. Coupling
code and configuration is certainly a downside. We have however opted for this
approach because, as an experimental environment, PLUS should provide a fast
turnaround. Having output object definitions as XDoclets tags in the task code,
helps not only in the generation of Hibernate code and database schema, but
also gives a better understanding of the analysis logic itself.

PLUS does not enforce any restriction in the way data is retrieved, pro-
cessed and stored by analysis tasks. Analysts may choose to use, for example,
the Hibernate query language or direct JDBC. It is worth mentioning that, given
the complexity of data in BI systems, Hibernate will provide many advantages.
The very powerful object/relational mapping offered by Hibernate allows the
task to take advantage of object-oriented features, like inheritance, association,
composition and collections. The use of Hibernate also offers an abstraction

224

Fig. 4. Generated Hibernate Object

layer, simplifying the task code, and other facilities, like transaction manage-
ment, database connection pooling, programmatic as well as declarative queries
and declarative entity relationship management. As an example, consider dis-
tinct Hibernate objects representing credit and debit card transactions. Having
both extending from a common card transaction object, an analysis can take ad-
vantage of polymorphism to easily derive all card transactions in a given retailer
chain during the summer sales.

Experiments have shown that there is a small performance penalty for using
Hibernate. Nevertheless, specially in cases where the performance is constrained
by the analytical work, this penalty is not the overriding factor when opting for
one or the other approach. In an experiment, an analysis processing 10,000 rows
took 123.47 seconds with JDBC and 140.19 seconds with Hibernate.

Execution and Instrumentation of Analysis: Scheduling and ordering of events is
an important concern when using a staged event-driven approach. In approaches
like SEDA [14], stages are responsible for defining their own scheduling policy for
incoming events. Examples of policies are FIFO (First In, First Out) and SRTP
(Shortest Remaining Process Time). PLUS uses events to maintain a consistent
state between correlated analyses. The framework is not designed to support a
large number of concurrent user connections, not having fairness in response time
as a major concern. For this reason, PLUS uses a simple FIFO policy, having
events processed in the order they arrive.

The event-based model is combined with thread level concurrency to enhance
performance. Despite encapsulating a single algorithm, many task instances can
be run simultaneously for different subsets of the data. The criteria for splitting
the work to be done into tasks is data analysis specific, since the algorithm
has to be consistent with the data set. For example, in a summary algorithm
that requires the month of a given transaction, it is reasonable to partition the
calculations according to the months, but not to days.

To handle the large amount of calculations required, PLUS uses a worker
/ task / controller architecture [13]. Workers are thread objects that execute

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 225

Fig. 5. Worker/Task/Controller Architecture

tasks. The number of workers, as well as other properties, can be dynamically
set and controlled through the JBoss JMX console. The analysis work is split
into several tasks, which are stored in a task provider and individually supplied
to workers. The controller creates and manages the execution of workers. It is
also the controller’s responsibility to respond to instrumentation requests (start,
pause, resume, complete, fail) sent through the JMX console. Fig. 5 illustrates
this architecture.

Tasks are themselves Hibernate objects that are persisted in the database,
as a “to do” list. Every time a task is completed, its Hibernate representation
is removed from the persistent storage. Duplicate tasks are not persisted, so
work is not unnecessarily executed. Adding this persistent nature to tasks only
required an auto-generated mapping file and database table. This approach adds
robustness to the solution, allowing the system to restart from where it has been
paused and recover in case of a failure.

Instrumentation of components is yet another feature provided for free with
JMX. Public methods of a service are automatically exposed through the JMX
console, offering the data analyst fine control over the execution. Users can mon-
itor task’s execution, set analysis specific properties, stop, start, restart, resume
and change the level of parallelism of services. Futhermore, the Hibernate inte-
gration with JMX provides the ability to modify the JDBC datasource proper-
ties, include/exclude mapping files and other features.

Scalability and Performance: Event based systems present a range of possibilities
for increased performance, data redistribution and operation. Implementations
can move to more performant realizations that use clustering, partitioning or
other methods to bring system capabilities benefits. Having the system composed
by self-contained components allows the use of clustered compute resources that
are available with most application servers. In our case, we can use the JBoss
clustering mechanism and apply it to the MBeans that execute services in order
to exploit real parallel execution (as opposed to interleaved concurrency on the
same CPU).

6 Lessons Learned

PLUS architecture evolved over time. This work involved investigation of tech-
nologies, experimentation with different designs and close interaction with ana-
lysts. Our experience is summarized below:

226

1. Persuasive industry driven technologies are not always the best solution.
Market leaders like Sun, BEA, Oracle and IBM are aggressively pushing
the use of “golden hammer” [4] [19] technologies like EJB. For PLUS, and
systems with similar characteristics, full J2EE solutions represent a high-
overhead with little benefits. Our experience with PLUS has shown that it
is possible to leverage benefits from lightweight open source projects and
industry standard mechanisms for component interoperability and commu-
nication. Hibernate, in particular, has proven to be able to handle complex
data models required by BI systems.

2. Having dependencies directly handled by the system removes the need for
scheduling, improving maintainability and management. Our previous ex-
perience in coordinating dependent components through scheduling mech-
anisms have proved to be error-prone and hard to configure and maintain.
Analysts were required to have an overall knowledge of the complete system,
so they could manually update dependencies when adding or removing com-
ponents. PLUS makes use of hot-deploy and inversion of control to assemble
components into a publish/subscribe model. Through information provided
by the components themselves, PLUS is able to automatically update depen-
dencies whenever they are added or removed from the system. This approach
requires less knowledge to deploy a module, as analysts only have to be aware
of the algorithm being developed and its input data format.

3. JMX provides a flexible approach for internal, and potentially external, man-
agement. JMX instrumentation has added significant support for experimen-
tation, as it allows changes to the system configuration at runtime. This fea-
ture also provides means for future optimizations, such as automatic resource
allocation for stages. In addition, as JMX is an open standard, PLUS can
be directly integrated with external management systems, such as Tivoli [1],
and operational environments.

4. A fundamental lesson learned was the importance of an optimal configura-
tion. A staged event-based architecture potentially increases the performance
of the system. However, the potential latency caused by both the granularity
of the tasks and the sizes of the data chunks processed by stages could yield
very poor performance. If stages were fully executed one after the other,
the time to completion would comprise the sum of individual stages execu-
tion times. PLUS logically splits analyses into units of work, firing events
when individual units have been completed. This approach enables depen-
dent components to start execution before previous stages have been com-
pleted, creating a pipeline effect. Maximizing the throughput of this pipeline
requires a careful design of analysis algorithms and eventing strategies.
Consider an example where the input data represents transactions on a given
retailer chain. A transaction has, among others, the following fields: “batch
identifier”, “month of the purchase” and “product identifier”. For this ex-
ample, assume that the two first fields coincide. Events informing changes in
the transactional data are based on the “batch identifier”. An over-simplified
analysis defines the number of products purchased by month. The experiment
started with 884,321 transactions, 10 batches and 100 different products. An

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 227

extra batch of 124,479 rows was added to the input table, forcing the analysis
to be recalculated. The following settings were tested:
– First, the analysis partitioned the work to be done in parallel tasks ac-

cording to “month of purchase”. This is a sensible choice, since the batch
coincides with the month of the transaction. The addition of a new batch
generated a single task that processed only the added batch. In this case,
the analysis completed in 10 seconds.

– In a second run, the work was split according to the “product identifier”.
This is not an appropriate selection, as the algorithm is based on months,
not products. Having tasks selecting the input data by product identifier
unnecessarily recalculates the number of purchase for every month. This
setting generated 100 tasks, one for each product identifier, and took 126
seconds to run.

– In a third experiment, the work was divided according to both “product
identifier” and “month of purchase”. This can be a reasonable choice if
the analysis component wants to take advantage of parallel execution
of tasks. In this case, again 100 tasks were instantiated, but the work
was only performed in the added batch. However, for this small sample
of data, 100 tasks were still an unnecessarily large number. Setting the
task to use a “modulo 10 function” on the product identifier creates 10
tasks which complete in 8 seconds.

There is a need for careful design of both architecture and analysis algo-
rithms to maximize process usage and gain scalability. As illustrated by the
example, selection of tasks split criteria will be analysis dependent. Initial
setting usually follow guidelines and final tuning can be done through ex-
perimentation.

5. Although we talk about PLUS as a single system, it is actually a framework
composed of four independent sub-projects. The adoption of sub-projects
has improved the development as their external use has helped to general-
ize requirements. Further, this approach has considerably improved PLUS
configuration management.

6. As to any tool, PLUS has been carefully designed to provide information
and encouragement for the data analyst. We believe that part of the system
success was the tight interaction of developers and analysts operating as
users.

7 Conclusion

This paper has described PLUS, a data analysis environment to extract mean-
ingful information from large amounts of data. PLUS can be classified as a BI
system and more broadly as a data-intensive application. In such systems, the
data process may be split into a sequence of dependent steps. These steps reduce
complexity and allow intermediate results to be available for other purposes.

PLUS uses an event-based architecture where large amounts of data are pro-
cessed by dependent stages. Having stages defined by loosely coupled and self-
contained components allows for modularity, extensibility and scalability. Stages

228

can be added and redefined for optimal configuration. Performance is improved
by in-process threading mechanisms within stages, having tasks parallel executed
in different subsets of the data.

Dependencies in the proposed architecture are handled through a publish /
subscribe event mechanism. Staged execution is triggered by events produced by
previous phases, freeing the system from providing scheduling mechanisms. Fur-
thermore, dependencies are self-managed, having stages automatically assembled
through inversion of control.

Instrumentation also plays an important role in PLUS. Finding the optimal
configuration may prove to be challenging. The ability to experiment, by con-
trolling the execution of stages and tuning of data process specific properties, is
a valuable feature for complex data analysis systems.

The proposed architecture caters for experimentation, allowing the system to
accommodate changes either in short periods or over time. Finally, the realization
of the design through the implementation of a real-world system has proven the
adequacy of lightweight technologies to large scale data processing applications.

Acknowledgments

The authors would like to acknowledge Dave Martin, Nicola Harris and Alok
Rana for their support in both development and review of this work.

References

1. Tivoli: Intelligent management software for the on demand world. Technical report,
http://www-306.ibm.com/software/tivoli/.

2. Searchspace: Enabling the Intelligent Enterprise. Technical report, April 2003.
3. Software Scoops - Insights on Software. Technical report, August 2004.
4. William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.

Mowbray. AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., 1998.

5. Business Objects. Businessobjects query and analysis. Technical report,
http://www.businessobjects.com/.

6. Calvin Austin. J2SE 1.5 in a Nutshell. Technical report,
http://java.sun.com/developer/technicalArticles/releases/j2se15, 2004.

7. G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure
to develop complex distributed systems. In Proceedings of the 20th international
conference on Software engineering, pages 261–270. IEEE Computer Society, 1998.

8. E. di Nitto and D. Rosenblum. Exploiting ADLs to Specify Architectural Styles
Induced by Middleware Infrastructures. In ”Proc. of the 21st Int. Conf. on Software
Engineering, Los Angeles, Cal.”, pages 13–22. ACM Press, 1999.

9. Lyman Do, Prabhu Ram, and Pamela Drew. The need for distributed asynchronous
transactions. In Proceedings of the 1999 ACM SIGMOD international conference
on Management of data, pages 534–535. ACM Press, 1999.

10. Marc Fleury, Scott Stark, and The JBoss Group. JBoss Administration and De-
velopment. John Wiley and Sons, Inc., 2002.

L. Duboc, T. Wicks, and W. Emmerich

Experience with Lightweight Distributed Component Technologies 229

Advanced Computing Systems, Mountain View, California, USA, 01 1995. USENIX,
Sun Microsystems Laboratories.

12. Juha Lindfors, Marce Fleury, and The JBoss Group. JMX: Managing J2EE with
Java Management Extensions. SAMS, 2002.

13. Anoop Mangat and Iain McLaren. Personal Communication, August 2000.
14. Matt Welsh and David E. Culler and Eric A. Brewer. SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services. In Symposium on Operating Systems
Principles, pages 230–243, 2001.

15. Kirk Pepperdine. Oracle9iAS/TopLink By Example. Technical report,
http://otn.oracle.com/oramag/webcolumns/2003/techarticles.

16. Research System Inc. The interactive data language. Technical report,
http://www.rsinc.com/idl/.

17. P G Sarang, Kyle Gabhart, Andre Tost, Tim McAllister, Rahim Adatia, Matjaz
Juric, Ted Osborne, Faiz Arni, Jeremiah Lott, Vaidyanathan Nagarajan, Craig A.
Berry, Dan O’Connor, John Griffin, Aaron Mulder, and Dave Young. EJB Profes-
sional. Wrox Press Inc, 2001.

18. Sun Microsystems. Java message service specification 1.1. Technical report,
http://java.sun.com/products/jms/docs.html.

19. Bruce A. Tate and Justin Getland. Better, Faster, Lighter Java. O’Reilly Media
Inc., 2004.

20. Hibernate Team. Hibernate reference documentation 2.1.4. Technical report,
http://www.hibernate.org/hib docs/reference/en/html/.

21. XDoclet Team. Xdoclet: Attribute oriented programming. Technical report,
http://xdoclet.sourceforge.net/xdoclet/index.html.

22. The MathWorks. Matlab tutorial. Technical report,
http://www.math.ufl.edu/help/matlab-tutorial.

23. The OLAP Council. Olap and olap server definitions’. Technical report,
http://www.olapcouncil.org/research/glossary.htm.

11. Ann Wollrath Samuel C. Kendall Jim Waldo, Geoff Wyant. Events in an rpc
based distributed system. In USENIX 1995 Technical Conference on UNIX and

Integration of Component-Based
Development-Deployment Support for J2EE

Middleware

Adirake Pimruang, Kazuhiro Fujieda, and Koichiro Ochimizu

Japan Advanced Institute of Science and Technology, School of Information Science,
1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan

{p-adirak, fujieda, ochimizu}@jaist.ac.jp

Abstract. From the widely use of component middleware, developers
can reuse existing components not only developed by in-house develop-
ment but also provided by other organizations. Some components de-
veloped in an organization can be deployed in other organizations via
the Internet. Developers need to handle the dependency information be-
tween such components in both of development and deployment phases.
We propose a system called J2DEP to generate and manage such in-
formation in the development phase, and to automate the deployment
of components. J2DEP copes with configuration management systems
to manage components and the information. It manages the dependency
information between in-house components and third vendor components,
and provides a consistent set of components in the release and deploy-
ment phases.

1 Introduction

The middleware, architecture for the development and deployment of software
components, is now widely used in business (e.g. J2EE [1], Microsoft .NET [2]
and CORBA [3]). Each component encapsulates part of a software system imple-
menting a specific service or a set of services to support business requirements.
To build large business systems, developers need several functionalities from the
existing components. They can reuse their own in-house developed components
or purchase components from third-party vendors to construct applications in
middleware technology. Reuse of existing components can reduce time and cost
of software development [4].

Each component can be provided by in-house development or come from
other organizations distributed in different locations. These organizations gener-
ally publish their components to their release sites as binary units to avoid source
code release [5]. Developers can integrate these binary components to develop
new components or applications [6]. They, however, could not acquire the depen-
dency information of third vendor components. They need to resolve component
dependencies manually when they adopt the third vendor’s components. In de-
ployment phase, it is also troublesome and consumes time to deploy the proper

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 230–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integration of Component-Based Development-Deployment Support 231

versions of components without their dependency information. Another problem
occurs when the version of a component is changed. Version conflicts appear in
the deployment phase because the effect of the change cannot be traced [7].

Current software configuration management (SCM) systems do not well pro-
vide to enable component-based development and component reuse [8]. Different
organizations can provide several versions of components in which their depen-
dency information is not explicitly described [9]. They cannot properly manage
the evolution of components developed by third-party organization. Each third
party organization develops its components and releases them in its own release
policy. For example, some organizations may release sources of their components
in their SCM repositories, and others may release binary components in their
HTTP server. SCM systems cannot help us to manage the dependency informa-
tion of components released with different policies.

The software deployment including following activities: obtaining compo-
nents, these dependents, packaging, and releasing, should be done in automatic
ways [10]. To realize automatic deployment, developers generally defines depen-
dency information of components in the release phase. Then, deployers use a
deployment tool to obtain components from the release site according to the
information. In component-based development, component identification starts
from the design phase [11]. Developers implicitly or explicitly use the information
in the development phase and redefine it again in the release phase.

What we need is the SCM system that supports component-based develop-
ment. SCM must support managing component relationships and the change of
component versions by different organizations. This means such a system must
help developers to adopt components based on different release policies, to gen-
erate the dependency information in the development phase and manage both
sources and them in SCM repositories. With this system, the deployment process
can be performed automatically. Developers can use the dependency informa-
tion of components to obtain the correct versions of components to be assembled
and deployed in developers’ middleware in the build and test phase. Also, de-
ployers can get correct versions of components to deploy in user middleware in
component the installation phase.

In this paper, we propose J2DEP (J2EE DEvelopment-dePloyment support),
which supports configuration management addressing both in development and
deployment phases. J2DEP helps developers to create or generate dependency
information from imported components and manages sources and dependency
information inside a CVS repository to support the development process. More-
over, J2DEP can also publish the binary components to release sites by using
FTP/HTTP servers. In the development process, J2DEP helps developers to
import remote components, which is developed by different organizations, to its
development environment by getting source files from the repository or binary
components from the release site. Then, it generates the dependency metadata
from imported components and control metadata files in the repository. The
dependency metadata mainly represents the component details (e.g. name, ver-
sion and type) and the method to obtain the component from a repository or

232 A. Pimruang, K. Fujieda, and K. Ochimizu

a release site. Finally, in the deployment phase, J2DEP helps developers to get
components from release sites, assemble relating components into application
components and to install them and the dependency information to the target
platform.

The paper is further structured as follows. We introduce the background
of this research in Sect. 2 and give an example scenario that motivates this
research in Sect. 3 We outline the overview and approach of J2DEP system
in Sect. 4. In Sect. 5, we give the implementation details of J2DEP system in
development-deployment phase support. We show related works in Sect. 6 and
give a conclusion in Sect. 7.

2 Background

J2DEP intends to support both of component development and deployment
phases. In this section, we would like to discuss about related works and moti-
vation of this research.

2.1 Component Development-Deployment

To realize the problem raised in the development process in middleware, we
would like to show the development roles and tasks in J2EE. J2EE development-
deployment roles consist of the following main three ones [1].

Application Component Provider. An application component provider pro-
vides the building blocks of a J2EE application. A provider can develop com-
ponents and package binary files into an application component. A component
from provider may have dependencies on other components. In J2EE, there are
two methods to handle such dependencies.

Package dependent components into a new component: The dependencies can be
reduced by grouping the related components into a new component. However,
this method reduces the degree of component reusability because dependent
components become a part of the new component.

Do not package dependent components: This method can maximize the reusabil-
ity of each component. We have to leave a room for application assemblers to
pick and select components to compose J2EE applications.

The problem raised in this role is about the dependencies. In the development
phase, generally, developers do not manage the dependency information and its
changes of their components in their repositories. Moreover, dependency infor-
mation in the development phase is often reduced in the release phase because
some components may be a part of another component. In this case, the same
components may have different dependency metadata in the repository and the
release site.

Application Assembler. An application assembler groups a set of components
developed by application component providers and to assemble them into a
J2EE application. An application assembler is responsible for providing assembly

Integration of Component-Based Development-Deployment Support 233

instructions describing external dependencies of the application that the deployer
must resolve in deployment phase.

To support application assembler automatically, the assemblers need to use
dependency information to obtain related component and to generate deploy-
ment descriptor about external dependencies.

Deployer. A deployer installs components and applications into a J2EE server.
He has to resolve all the external dependencies declared by the application com-
ponent provider and the application assembler to configure them. The applica-
tion component provider should define dependency information of components
properly in the development phase.

2.2 Software Configuration Management (SCM)

Software configuration management concept is to manage charges of software
artifacts. The most of SCM systems including RCS [12] and CVS [13] can manage
only text file. While component-based development, developer has to deal with
both component sources in text format and binary components. So we need a
method to manage changes in binary components on local SCM systems (SCM
systems of in-house development) when developers want to reuse them.

2.3 Software Deployment

The software deployment life cycle is evolving these activities: package, release,
configure, assembler, install, update, remove and adapt [14]. The most of deploy-
ment tools can support component development and can manipulate the com-
ponent dependencies. Some tools can support component development among
distributed organizations. SRM [15], Software Dock [14], RPM [16] can manage
multiple version of component. But these tools do not connect the deployment
process with SCM. TWICS [10] resolves this shortcoming by supporting to get
components from SCM repository (third vendor repository or in-house repos-
itory) to release and get the component from component publisher to a local
SCM repository (source repository of in-house development).

However, deployment tools we mentioned above do not connect the develop-
ment and deployment phases properly. The component dependencies are gen-
erally defined in the release phase. By reuse concept, related components have
been defined in the design phase. The developer needs the dependencies defined
in the deployment phase especially in the build and test phases, so the depen-
dencies should be defined in the development phase rather than in the release
phase.

3 Example Scenario

To clarify the issues of component development-deployment in middleware, we
consider the relationship of components developed by different organizations
shown in Fig. 1. The rectangle boxes represent components developed by each
organization displayed in oval shapes. The arrows show the dependencies among

234 A. Pimruang, K. Fujieda, and K. Ochimizu

Fig. 1. Example scenario of component-based development

the components. The text below each rectangle box shows its component name,
version and release type respectively.

The first issue is that each organization may develop several versions of com-
ponents and each component may depend on other components. Developers have
no support to document the dependency information properly. They need to
resolve dependencies manually whenever they get the sources from their reposi-
tory to put into the development environment. For example, the dependencies of
UserService 1.2 on AccountManager1.5, UserTransaction 2.3, DbConnector 1.7
and ProfileFormat 1.2, are not provided in development phase. The dependency
information in the release phase cannot be documented properly because it is
not defined in the development phase. As the result, we cannot guarantee the
consistency throughout the deployment phase.

The second issue is that the some dependencies may be reduced in release phase
because developer may combine some components with another component. For
example, the dependencies of UserService 1.2 are AccountManager1.5, UserTrans-
action 2.3, DbConnector 1.7 and ProfileFormat 1.2 in development phase. In re-
lease phase, the developer can combine AccountManager 1.5 and DbConnector 1.7
with UserService 1.2. The dependencies of the resulting UserService 1.2 become
only UserTransaction 2.3 and ProfileFormat 1.2. The component dependencies in
the development phase and the deployment phase can be different.

The third issue is that each organization may develop and publish the com-
ponents based on different release policies. They may publish the component
sources their repository, the binary components in their release server or attach
the component sources with the binary components. Developers need not only
the dependency information but also the methods to obtain the components.
For example, to develop UserService, ATech needs to define the relations to Ac-
countManager, UserTransaction and ProfileFormat. ATech needs to define also
the methods to get binary versions of AccountManager and ProfileFormat from
corresponding release sites and to get the component sources of UserTransaction

Integration of Component-Based Development-Deployment Support 235

from the repository. As the result, the component developer and deployer need
the method to handle with different release policies.

To summarize the problem raised in component development-deployment
process, current systems come into these shortcomings:

1. Dependency information defined in the development phase cannot be used
in the release and deployment phases automatically.

2. Dependencies in the development phase and the deployment phase can be
different because to combine components with another component can re-
duce the dependency information.

3. SCM systems cannot import sources or binary versions of components devel-
oped by different organizations into local development environment automat-
ically and cannot manage the dependency information of each component.

We need a system to manage interrelated components in the development
phase and to deploy consistent sets of components to middleware automatically.

4 Approach

The J2DEP research project addresses support to component development-
deployment process. This system integrates the functionalities of the configura-
tion management, component development and component deployment together.

The key insight of this research is to manage the evolution of third ven-
dor components inside local configuration management. Rather than to bring
and control all versions of third vendor components in the local configuration
management, J2DEP supports developers to import the external components to
development space mentioned below and generate the dependency information
as dependency metadata. Then, J2DEP keeps and manages the dependency
metadata in the local configuration management instead.

4.1 Development Space

Developers can use J2DEP to import third vendor components into the devel-
opment spaces shown in Fig. 2 and to generate dependency metadata.

A development space is a directory structure to store source files, dependency
metadata and dependent components imported by developer corresponding to
dependency metadata. In a development phase, a developer can use J2DEP to
import third-vendor components into his development space, and then he can
control both the sources and the metadata in his local SCM. The details of the
development space are shown in Fig. 6 in Sect. 5.

4.2 Dependency Metadata

Dependency Metadata mainly describes details of dependent components (com-
ponent name, version, vendor, component type, and package type) and the
method to obtain components either from source repositories or release sites.

236 A. Pimruang, K. Fujieda, and K. Ochimizu

Component Source

A1.2

C1.1 D1.5

Metadata

Fig. 2. An example of development space

<dependency_component>
<name>ProfileFormat</name>
<version>1.2</version>
<vendor>CyberC</vendor>
<type>Application Jar</type>
<packagetype>binary</packagetype>
<!-- binary package location-->
<location>www.cyberc.com/release/profileFormat.jar</location>

</dependency_component>

Fig. 3. Dependency metadata from a release site

<dependency_component>
<name>UserTransaction</name>
<version>2.3</version>
<vendor>DCom</vendor>
<type>Session Bean</type>
<packagetype>source</packagetype>
<!-- source location-->

<location>cvshost.dcom.com</location>
<cvsroot>/work/cvsroot</cvsroot>
<authentication>pserver</authentication>
<tag>UserTransaction-2.3</tag>

</dependency_component>

Fig. 4. Dependency metadata from a source repository

A developer can define the relationship among any combination of sources and
binary components with dependency metadata.

Integration of Component-Based Development-Deployment Support 237

Component

Source

SCM Repository

Binary

Component

Release Site

Source Accessible

Organization

Source Inaccessible

Organization

Development

Space

CM API

Component

Release Tool

Component Development Tool

End-User Deployment

Agent

Build and test

J2EE middleware

SCM Repository

End-User

J2EE middleware

Release Site

J2DEP System

Fig. 5. J2DEP architecture

J2DEP supports to generate two kinds of metadata depending on the release
policy of each component:

– Metadata of a component from a release site, shown in Fig. 3. It consists of
component details and URL to download the component

– Metadata of a component from a source repository, shown in Fig.4. It consists
of component details, the repository location, the authentication type and
the tag name for checking out the component sources.

4.3 J2DEP Architecture

In Fig. 5, we show the overall J2DEP architecture. The development space is
where developers place the component sources, dependencies and perform their
development. They can use J2DEP to import dependent components by getting
sources from organizations that allow accessing the sources in their repositories
or by downloading the binary components from the organizations that publish
only binary versions. After they fill out the component information to J2DEP,
J2DEP will generate dependency metadata into their development space.

J2DEP connects development space with configuration management API
(CM API) to manage versions of component sources and their dependencies
and connects with release sites to publish components with dependency meta-
data. To support consistency of component versions in the deployment phase,
J2DEP uses the dependency metadata defined in the development phase.

238 A. Pimruang, K. Fujieda, and K. Ochimizu

There are two kinds of middleware deployed components.

– Build and test middleware is for developers to deploy the components ob-
tained from the repository and their dependencies. Developers can build
binary components and deploy them with dependencies. They are used in
the testing phase.

– User middleware is for end-users who deploy only binary components to
operate their business requirements and have no relation to the component
development process. Deployer can obtain binary components from release
sites to deploy in user middleware.

4.4 Main Functionality

The J2DEP architecture consists of two main parts Component Development
Support Tool and End-User Deployment Agent.

Component Development Support Tool. This tool supports to generate
dependency information for each component and connect a development space
with CM API, build and test middleware and release sites.

End-User Deployment Agent. This tool supports in the deployment phase
to assemble related components to an application component and deploy it in
end-users middleware. End-User Deployment Agent will also record the deployed
component data to manage dependencies of components on end-user middleware.

5 Implementation

J2DEP supports various kinds of J2EE components based on the architecture
described in Sect. 4. J2DEP prototype integrates the development spaces with
CVS to manage sources and dependency metadata, HTTP/FTP servers to pub-
lish binary components and JBOSS middleware as a platform to deploy J2EE
components.

In this section, we show the implementation details of Component Develop-
ment Support Tool and End-User Deployment Agent. At first, we discuss about
Component Development Support. We show how J2DEP supports to create
the development spaces, import the related component, generate the depen-
dency metadata, build component, deploy components with dependencies into
the middleware in development sites and release the components to the release
site. Then, we show how End-User Deployment Agent can support deployers.

5.1 Component Development Support Tool

Development Space Structure. J2DEP supports to build a development
space, to create components, to obtain components from the source repository
and to import the dependency information of them. In the prototype system, we
use the same structure of the development space and the project metadata as

Integration of Component-Based Development-Deployment Support 239

Fig. 6. Development space, source repository and release site

Eclipse [17] JDT (Java development tools), so that the developers can continue
development with Eclipse easily. The development space structure (as illustrated
in Fig. 6) consists of several locations for the following artifacts:

Source Directory. Component source files, dependency metadata and the en-
crypted user name and password to connect a source repository or a release site
of dependent components.
Binary Directory. Compiled versions of Java sources.
Dependent Component Directory. Binary versions of dependent compo-
nents imported by developers to the development space.
Binary Version of Component. Components built from corresponding sources
in the source directory.
Project Metadata. Information about the components in the development
space.

Development Space Initialization. Developers can start developing compo-
nents by initializing a development space. J2DEP helps to create a new develop-
ment space shown in Fig. 6. They can also open an existing development space
from a project metadata file. Then, all components of the development space
defined in the project metadata will be opened by the J2DEP tool.

J2DEP connects the development space with a CVS repository shown in
Fig. 4. Developers can create new components or pull existing components from
source repository to the development space. To create a new component, J2DEP
supports to prepare source files and a deployment descriptor for a J2EE compo-
nent. To pull an existing component from a repository, developers have to inform

240 A. Pimruang, K. Fujieda, and K. Ochimizu

J2DEP about the component name and version to check out the component by
CVS tagging. J2DEP supports to check out sources, dependency metadata and
encrypt user name and password file from source repository. Then, J2DEP will
get dependent components corresponding to dependency metadata and put into
Dependent component directory to prepare for the build and test process in the
development phase.

Once, the developers create or check out components into the development
space, they can continue development by using normal configuration manage-
ment procedures (e.g. using CVS).

Dependent Component Import Tool. J2DEP helps developers to import
the dependent components from either in-house or third vendor developments to
the development spaces. The dependent components can be component sources
from the SCM repositories or binary components from the release sites.

Developer has to select the methods to import the component from the reposi-
tories or the release sites. To import the dependent components, J2DEP supports
the developers to import by three methods (1) downloading from release sites
(2) checking out from repositories (3) copying from the local computer. J2DEP
will import the components into Dependent Component Directory. Developers
need to inform J2DEP about the component details and the connection details
shown in Fig. 7 and Fig. 8.

After developers fill out the form, J2DEP generates the dependency meta-
data, like in Fig. 3 and Fig. 4, for the imported components. For the user name
and the password to connect a repository or a release server, J2DEP will encrypt
them and generate a new file separated from dependency metadata.

Notice that, the developers need to add the next level dependencies manually,
when the component does not include any metadata (e.g. the component is not
built by J2DEP).

Fig. 7. The import tool for binary components from release sites

Integration of Component-Based Development-Deployment Support 241

Fig. 8. The import tool for component sources from repositories

Component Packaging and Developer Site Deployment Support. When
a developers finish developing by using the normal configuration management
procedures, J2DEP supports to build the Java source files and package the com-
piled sources into a binary component automatically.

J2DEP supports to generate the default J2EE deployment descriptor and
assemble the related components in Component Dependency Directory of the
development space into a single J2EE module. They can deploy or redeploy a
J2EE module to their middleware server to perform the testing phase. They can
use this tool to undeploy components and their dependencies from middleware.

Component Release Tool. After developers finish testing the components in
their development space, they can release the binary components to release sites.
J2DEP supports developers to connect to FTP/HTTP servers and to upload
the binary versions of components. Developers or end-users can download the
components from the release sites by Developer Deployment Support or End-
User Deployment Agent.

In the release phase, the developers need to select components and com-
bine them into a new component for releasing. If they select a component to
be included in other component package, the dependency on the component is
removed. For example in Fig. 9, the dependency metadata between UserWeb-
Component and transactionBean is removed because transactionBean becomes
a part of UserWebComponent.

The developers also need to specify the release policy for each component
that contains sources. If they do not want to release component sources, they
have to inform J2DEP about the location to upload the binary component.

242 A. Pimruang, K. Fujieda, and K. Ochimizu

Fig. 9. Component release tool

5.2 End-User Deployment Agent

End-User Deployment Agent supports to deploy and undeploy the binary version
of components to the end-user middleware.

Deploy Support. This function downloads components and their dependent
components to middleware. To deploy components, the deployers have to in-
form the component name, version and location to download each component
to End-User Deployment Agent. After finishing downloading components, End-
User Deployment Agent generates the J2EE default deployment descriptor and
assemble every component into an application. Then, it records the components
that they have already deployed into a log file. When deployers want to deploy
again, the existing components in middleware are not downloaded again.

Undeploy Support. This function removes components and their external de-
pendencies. To maintain the consistency of the components in middleware, End-
User Deployment Agent can remove only the components that are not shared
by other components

6 Related Works

J2DEP is built to connect component development and deployment processes.
There are several tools to support these processes. We discuss some integrated
development environments (IDEs) such as Eclipse [17], NetBeansIDE [18] and
JBuider [19]. We also discuss RPM [16] and TWICS [10] for component deploy-
ment support.

We compare the functionalities of each tool in development-deployment pro-
cess in Table 1. These IDEs support the development process of Java including
J2EE applications. They can support J2EE development by several kinds of plug-
ins. Developers can use these tools to create various kinds of J2EE components,
manage the component sources in their repositories, and test them. Although
these tools provide the interface to connect the development environment with
an SCM repository, the dependencies of components are not well resolved and
managed in the repository. Developers have to manage the dependency informa-
tion in the local configuration management manually.

Integration of Component-Based Development-Deployment Support 243

Table 1. Functionalities of J2DEP and related tools

IDEs RPM TWICS J2DEP
Connect the tool with the development space © × �2 �4

Generate dependency information × �1 �3 ©
Connect the tool with SCM © × © ©
Manage dependency information in SCM × × © ©
Component release support × © © ©
Deploy components to the development space © © © ©
Deploy components to end-users’ sites × © © ©
Deploy components with dependencies × × �2 ©

©= supported, ×= not supported, �= partially supported
�1 Generate the dependency but no detail about the component location.
�2 Support only components built by TWICS.
�3 Generate the dependency information only in the release phase.
�4 The target space must be the same as Eclipse development space in the

development phase.

7 Conclusion

In this research, we proposed J2DEP, the integration of component-based
development-deployment and software configuration management in middleware.
This system is designed to support managing the interrelation of in-house com-
ponents and third vendor components. J2DEP links between component devel-
opment and component deployment. The dependency metadata defined in the
development phase and component sources can be managed in local configura-
tion management. J2DEP uses dependency metadata to support the build and
release processes for developers. J2DEP also helps a developer or a deployer to
deploy consistent sets of components in either developer site or user site.

Currently, J2DEP lacks some features for the component development-
deployment support. For example, developers have to merge different versions
of dependency metadata manually. We need to implement these features. In the
current prototype, J2DEP is a tool separated from the other development tools.
In the future, it would be advantage to implement J2DEP as the other devel-
opment tool plug-ins, for example, Eclipse or NetBeanIDE. This would allow
developers to gain the benefit from all infra-structure provided by the other
tools.

References

1. Inderjeet, S., Stearns, B., Johnson, M.: Designing Enterprise Applications With
the J2Ee Platform. Addison-Wesley (2002)

2. Corporation, M.: Microsoft .NET technical resources. http://www.microsoft.
com/net/technical/ (2004)

244 A. Pimruang, K. Fujieda, and K. Ochimizu

3. Object Management Group, Inc.: Common Object Request Broker Architecture:
Core Specification. formal/04-03-12 edn. (2004)

4. Whitehead, K.: Component Based Development: Principles and Planning for Busi-
ness Systems. Addison-Wesley (2002)

5. Cervantes, H., Hall, R.S.: Autonomous adaptation to dynamic availability using a
service-oriented component model. In: Proceedings of 26th International Confer-
ence on Software Engineering (ICSE’04). (2004) 614–623

6. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. 2nd edn. Addison-Wesley (2002)

7. Schmidt, D.C., Vinoski, S.: The corba component model: Part 1, evolving towards
component middleware. C/C++ Users Journal (2004)

8. Weber, D.W.: Requirements for an scm architecture to enable component-based
development. In: Proceedings of the 10th International Workshop on SCM. (2001)

9. Edwards, S.H., Gibson, D.S., Weide, B.W., , Zhupanov, S.: Software component
relationships. In: the 8th Annual Workshop on Institutionalizing Software Reuse.
(1997)

10. Sowrirajan, S., van der Hoek, A.: Managing the evolution of distributed and
interrelated components. In: Proceedings of the 11th International Workshop on
SCM. LNCS 2649, Springer-Verlag (2003) 217–230

11. Larsson, M., Crnkovic, I.: Configuration management for component-based sys-
tems. In: Proceedings of the 10th International Workshop on SCM. (2001)

12. Free Software Foundation, Inc.: RCS. http://www.gnu.org/software/rcs/
rcs.html (2003)

13. Cederqvist, P., et al.: Version management with CVS for cvs 1.11.17.
http://www.cvshome.org/docs/manual/ (2004)

14. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support software
deployment using the software dock. In: Proceedings of the 21st International
Conference on Software Engineering (ICSE’99). (1999) 174–183

15. van der Hoek, A., Hall, R.S., Heimbigner, D., Wolf, A.L.: Software release manage-
ment. In: Proceedings of the 6th European Software Engineering Conference (held
jointly with the 5th ACM SIGSOFT international symposium on Foundations of
Software Engineering). (1997) 159–175

16. The RPM community: www.rpm.org homepage. http://www.rpm.org/ (2002)
17. Eclipse Foundation: eclipse.org. http://www.eclipse.org/ (2004)
18. netBeans.org: NetBeans IDE. http://www.netbeans.org/products/ide/ (2004)
19. Borland Software Corporation: Borland JBuilder. http://www.borland.com/

jbuilder/ (2004)

Author Index

Almquist, Justin 19
Alonso, Gustavo 1
Apel, Sven 137

Beznosov, Konstantin 3
Binder, Walter 154
Bromberg, Yérom-David 64
Böhm, Klemens 137

Duboc, Leticia 214

Eichberg, Michael 47
Emmerich, Wolfgang 214

Fenkam, Pascal 78
Floch, Jacqueline 107
Fujieda, Kazuhiro 230

Gorton, Ian 19, 185

Haack, Jereme 19
Hackmann, Gregory 91
Hallsteinsen, Svein 107
Hulaas, Jarle 154

Issarny, Valérie 64

Jazayeri, Mehdi 78
Julien, Christine 91

Liu, Yan 185
Loecher, Sten 31

Maranzana, Mathieu 170
Matsuda, Shigeyuki 199
Mezini, Mira 47
Mondéjar, Rubén 123

Ochimizu, Koichiro 230

Pairot, Carles 123
Payton, Jamie 91
Pimruang, Adirake 230
Pujol, Jordi 123

Rallo, Robert 123
Roman, Gruia-Catalin 91

Sakata, Yuji 199
Sourrouille, Jean-Louis 170
Stav, Erlend 107

Tejedor, Helio 123

Vienne, Patrice 170

Wicks, Tony 214

Garćıa, Pedro 123

	Frontmatter
	Keynote
	Dynamic Software Adaptation: Middleware for Pervasive Computing

	Middleware Services
	Here's Your Lego<Superscript>TM</Superscript> Security Kit: How to Give Developers All Protection Mechanisms They Will Ever Need
	Integration of a Text Search Engine with a Java Messaging Service
	A Common Conceptual Basis for Analyzing Transaction Service Configurations
	Alice: Modularization of Middleware Using Aspect-Oriented Programming

	Ubiquitous Computing
	Service Discovery Protocol Interoperability in the Mobile Environment
	Formally Designing an Event-Based Application for Mobile Collaboration: A Case Study
	Supporting Generalized Context Interactions
	A Middleware Centric Approach to Building Self-adapting Systems
	PlanetSim: A New Overlay Network Simulation Framework
	Towards the Development of Ubiquitous Middleware Product Lines

	Performance and QOS
	Extending Standard Java Runtime Systems for Resource Management
	Modeling Distributed Applications for QoS Management
	Accuracy of Performance Prediction for EJB Applications: A Statistical Analysis

	Building Distributed Applications
	A Proposal for Evolution Driven Middleware Architecture for eBusiness Process Execution
	Experience with Lightweight Distributed Component Technologies in Business Intelligence Systems
	Integration of Component-Based Development-Deployment Support for J2EE Middleware

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

